Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

336results about "Electroforming by electrophoresis" patented technology

Multi-layer cable design and method of manufacture

A novel method of designing and fabricating flexible and lightweight cable [100] having a central conductor [110], a dielectric layer [130], an outer conductor [150] and an insulation coating [170] using thin film technology is disclosed. The dielectric layer [130] is ‘grown’ on dielectric layer [130] using electrophoretic deposition to a specified thickness, based upon its intended use. It may include nano-diamonds. Ion beam assisted deposition is used to metalize the cable dielectric layer [130]. This may be ion beam assisted sputtering, ion beam assisted evaporative deposition or ion beam assisted cathodic arc deposition. In an alternative embodiment, the outer conductor may be etched to provide greater flexibility, or to add a piezoelectric layer. The central conductor [110] may be created from dielectric fibers [113] which are metalized as described above. The piezoelectric layer added to create ultrasonic transducer cables.
Owner:RAZAVI ALI

Processes for the production of electrophoretic displays

A coating of an encapsulated electrophoretic medium is formed on a substrate (106) by dispersing in a fluid (104) a plurality of electrophoretic capsules (102), contacting at least a portion of a substrate (106) with the fluid (104); and applying a potential difference between at least a part of the portion of the substrate (106) contacting the fluid (104) and a counter-electrode (110) in electrical contact with the fluid (104), thereby causing capsules (102) to be deposited upon at least part of the portion of the substrate (106) contacting the fluid (102). Patterned coatings of capsules containing different colors may be deposited in registration with electrodes using multiple capsule deposition steps. Alternatively, a patterned coating may be deposited upon a substrate containing a conductive layer by varying the conductivity of the conductive layer by radiation exposure or by coating portions of the conductive layer with an insulating layer, typically a photoresist.
Owner:E INK CORPORATION

Process for producing hybrid nano-filament electrodes for lithium batteries

This invention provides a process for producing a hybrid nano-filament composition for use in a lithium battery electrode. The process comprises: (a) providing a porous aggregate of electrically conductive nano-wires that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a porous network of electrically conductive filaments, wherein the nano-wires have a diameter or thickness less than 500 nm; and (b) depositing an electro-active coating onto a surface of the nano-wires, wherein the electro-active coating is capable of absorbing and desorbing lithium ions and the coating has a thickness less than 10 μm, preferably less than 1 μm. This process is applicable to the production of both an anode and a cathode. The battery featuring an anode or cathode made with this process exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Image display panel manufacturing method, image display device manufacturing method, and image disiplay device

In the case of filling and setting the liquid powders or the particles in a plurality of cells formed by the partition walls on the substrate, the method includes the steps of: setting a nozzle at an upper portion of a container; setting the substrate, on which the partition walls are arranged, at a lower portion of the container; scattering the liquid powders or the particles dispersed in a gas from the nozzle arranged at the upper portion in the container; and filling the liquid powders or the particles in the cells on the substrate arranged at the lower portion in the container. After this filling, the method further includes: a filling step for filling a predetermined amount of the liquid powders or the particles in spaces constituting the image display cells isolated by the partition walls; a removing step for removing unnecessary liquid powders or unnecessary particles remaining on the partition walls in the filling step; a substrate stacking step for stacking the transparent substrate and the opposed substrate via the partition walls and applying a sealing agent at a peripheral portion of the substrate so as to make an atmosphere between the transparent substrate and the opposed substrate uniform; and an electrode adhering step for connecting a circuit for displaying the image to the electrode so as to form a module.
Owner:BRIDGESTONE CORP

Graphene Films and Methods of Making Thereof

Provided are methods for forming graphene or functionalized graphene thin films. Also provided are graphene and functionalized graphene thin films formed by the methods. For example, electrophoretic deposition methods and stamping methods are used. Defect-free thin films can be formed. Patterned films can be formed. The methods can provide conformal coatings on non-planar substrates.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Method of electrophoretic deposition of ceramic bodies for use in manufacturing dental appliances

A method for electrophoretic deposition of ceramic particles as a green body shaped as a dental appliance, the method comprising the steps of (a) forming a suspension of the ceramic particles in a first polar solvent, the ceramic particles constituting at least about 5% of the first suspension by weight; (b) passing a direct electrical current through the first suspension, using a deposition electrode shaped as the dental appliance to form a green body; (c) coating the green body with glass particles; and (d) sintering the resultant coated body for obtaining a glass coated all-ceramic dental appliance.
Owner:CEREL CERAMIC TECH

Processes for the production of electrophoretic displays

A coating of an encapsulated electrophoretic medium is formed on a substrate (106) by dispersing in a fluid (104) a plurality of electrophoretic capsules (102), contacting at least a portion of a substrate (106) with the fluid (104); and applying a potential difference between at least a part of the portion of the substrate (106) contacting the fluid (104) and a counter-electrode (110) in electrical contact with the fluid (104), thereby causing capsules (102) to be deposited upon at least part of the portion of the substrate (106) contacting the fluid (102). Patterned coatings of capsules containing different colors may be deposited in registration with electrodes using multiple capsule deposition steps. Alternatively, patterned coatings of capsules may be formed by applying a fluid form of an electrophoretic medium to a substrate, and applying a temporally varying voltage between an electrode and the substrate. The process may be repeated to allow for deposition of full color displays.
Owner:E INK CORPORATION

Methods and devices for enhanced adhesion between metallic substrates and bioactive material-containing coatings

Disclosed herein are methods to create medical devices and medical devices including bioactive composite structures with enhanced adhesion characteristics. The bioactive composite structures are prepared using anchors that are electrochemically codeposited into a metallic layer that is formed on the surface of implantable medical device followed by the adhesion of a bioactive material-containing coating to the substrate and anchors.
Owner:MEDLOGICS DEVICE CORP

Electro-optic displays, and materials for use therein

A first electro-optic display comprises first and second substrates, and an adhesive layer and a layer of electro-optic material disposed between the first and second substrates, the adhesive layer comprising a mixture of a polymeric adhesive material and a hydroxyl containing polymer having a number average molecular weight not greater than about 5000. A second electro-optic display is similar to the first but has an adhesive layer comprising a thermally-activated cross-linking agent to reduce void growth when the display is subjected to temperature changes. A third electro-optic display, intended for writing with a stylus or similar instrument, is produced by forming a layer of an electro-optic material on an electrode; depositing a substantially solvent-free polymerizable liquid material over the electro-optic material; and polymerizing the polymerizable liquid material.
Owner:E INK CORPORATION

Methods and structures for the production of electrically treated items and electrical connections

This invention involves unique electroplated items comprising electrically conductive polymers. In addition, novel processing is taught to facilitate continuous production of electrically treated items. Many embodiments employ directly electroplateable resins for particular advantage. Unique methods of establishing electroplated electrical connections are taught.
Owner:LUCH DANIEL

Coatings with cross-linked hydrophilic polymers

The present invention relates to a process for permanently coating the inner surface of columns, capillaries and microchannel systems with hydroxylic polymers, such as polyvinyl alcohol, and to the thus prepared columns, capillaries and microchannel systems and their use.
Owner:AGILENT TECH INC

Coated and magnetic particles and applications thereof

A method of using coated and / or magnetic particles to deposit structures including solder joints, bumps, vias, bond rings, and the like. The particles may be coated with a solderable material. For solder joints, after reflow the solder material may comprise unmelted particles in a matrix, thereby increasing the strength of the joint and decreasing the pitch of an array of joints. The particle and coating may form a higher melting point alloy, permitting multiple subsequent reflow steps. The particles and / or the coating may be magnetic. External magnetic fields may be applied during deposition to precisely control the particle loading and deposition location. Elements with incompatible electropotentials may thereby be electrodeposited in a single step. Using such fields permits the fill of high aspect ratio structures such as vias without requiring complete seed metallization of the structure. Also, a catalyst consisting of a magnetic particle coated with a catalytic material, optionally including an intermediate layer.
Owner:SURFECT TECH

Barrier coatings for interconnects; related devices, and methods of forming

A method of preparing a solid oxide fuel cell is described herein, as well as the fuel cell itself. The method comprises forming a cathode layer comprising a strontium composition on a ceramic electrolyte layer; and forming a barrier layer between the cathode layer and an overlying interconnect structure comprising chromium, so as to substantially prevent the formation of strontium chromate.
Owner:CUMMINS ENTERPRISE LLC

Fluidics Apparatus for Surface Acoustic Wave Manipulation of Fluid Samples, Use of Fluidics Apparatus and Process for the Manufacture of Fluidics Apparatus

A fluidics apparatus for manipulation of at least one fluid sample is disclosed. A manipulation surface locates the fluid sample. A surface acoustic wave (SAW) generation material layer is provided. This is a polycrystalline material, textured polycrystalline material, biaxially textured polycrystalline material, microcrystalline material, nanocrystalline material, amorphous material or composite material. A transducer electrode structure arranged at the SAW generation material layer provides SAWs at the manipulation surface for interaction with the fluid sample. The manipulation surface has a phononic structure, for affecting the transmission, distribution and / or behaviour of SAWs at the manipulation surface. The apparatus is typically manufactured by reel-to-reel processes, to reduce the unit cost to a level at which the apparatus can be considered to be disposable after a single use.
Owner:THE UNIV COURT OF THE UNIV OF GLASGOW

Apparatus and process for producing electrophoretic device

A system (apparatus and process) for producing an electrophoretic (display) device is provided for allowing production of such a device wherein electrophoretic particles in the dispersion liquid are easily and evenly distributed to respective cells (pixels) between two substrates of the device even in the case of a very small gap between the two substrates or the case of using a flexible substrate. The system includes a storage unit for a dispersion liquid containing the charged phoretic particles dispersed therein, a stirrer for stirring the dispersion liquid, a substrate-holder for holding the substrate in the dispersion liquid, and a voltage source for applying a voltage to the electrodes formed on the substrate thereby depositing the electrophoretic particles on the electrodes.
Owner:CANON KK

Metal-supported tubular fuel cell

This invention relates to a method of manufacturing a metal-supported tubular micro-solid oxide fuel cell, and a fuel cell made from such method. The method comprises the steps of coating a wooden substrate member with a conductive substrate layer, coating the substrate layer with an inner electrode layer, coating the inner electrode layer with an electrolyte layer, drying and sintering the coated substrate member such that the substrate member combusts, coating the electrolyte layer with an outer electrode layer, and then drying and sintering the layers. The invention further relates to a method of manufacturing a tubular solid oxide fuel cell assembly comprising: a) coating a tubular substantially metallic support layer with a ceramic or cermet inner electrode layer, b) coating the inner electrode layer with a ceramic electrolyte layer; c) coating the electrolyte layer with a ceramic or cermet outer electrode layer, then d) sintering the layers to produce a hollow tubular metal-supported fuel cell; the electrode and electrolyte layers having a collective wall thickness of 80 μm or less, the support layer having sufficient mechanical strength to support the electrode and electrolyte layers and sufficient porosity to flow a reactant therethrough.
Owner:INNOTECH ALBERTA INC

Microchemical method and apparatus for synthesis and coating of colloidal nanoparticles

The present invention represents a radical departure from most conventional macro-scale batch processing methods employed to synthesize and coat colloidal nanoparticles. Synthesis and coating are in series and in-situ, obviating the need for numerous cumbersome, and often expensive intermediate-processing steps. In one embodiment, the invention is a method and apparatus for synthesizing colloidal nanoparticles. In another embodiment, the invention is a method and apparatus for enabling coating of colloidal nanoparticles using an electrophoretic switch for contacting and separating said colloid nanoparticles.
Owner:MASSACHUSETTS INST OF TECH

Method for forming high performance surface coatings and compositions of same

A method of forming on an object a surface coating having a high mechanical strength and chemical and physical stability above 700° C. is disclosed. The method comprises (a) electrophoretically depositing at least one surface coating material on a surface of the object for obtaining a green coating on the surface; and (b) infiltrating into and depositing onto the green coating at least one additional surface coating material by a gas-phase infiltration / deposition method, thereby forming a high performance surface coating, wherein, the at least one surface coating material and the at least one additional surface coating material are chemically and physically stable above 700° C.
Owner:CEREL CERAMIC TECH +1

Method of printing variable information

The gel method of printing variable information of the present invention involves applying inks onto a substrate that is part of or attached to a cylinder of the printing machine. Imaging is by means of an energy source in the UV, visible or infrared regions, modulated to represent a digital image pattern that has been composed on a computer. The consequence of imaging is to gel the ink and increase its adhesion to the substrate of the printing cylinder. The non-gelled background ink with lower adhesion is then removed by a squeegee action and returned to an ink reservoir. The remaining image is transferred to an offset blanket or directly to print stock by pressure. The process does not use a master, but produces an image that is erased after printing with each cylinder rotation so that the next rotation producing the next print can have fresh information written upon it.
Owner:KODAK IL

Microfluidic electrospray thruster

An electrospray thruster and methods of manufacturing such thrusters are provided. The micro-electrospray thruster increases the thrust density of conventional electrospray thrusters by miniaturizing the individual components of the thruster thereby allowing for the increase in the number and density of the charged particle emitters.
Owner:CALIFORNIA INST OF TECH

Coatings for implantable medical devices for liposome delivery

Disclosed herein are medical devices, such as implantable medical devices (e.g., stents), comprising at least one coating covering at least a portion of the device comprising dry film. The dry film comprises at least one lipid bilayer and at least one pharmaceutically effective agent. Upon exposure to an aqueous fluid, liposomes are released comprising lipids from the dry film encapsulating the pharmaceutically effective agent. The film can contact the device directly or can be coated on a substrate, such as a ceramic.
Owner:MIV SCI HLDG

Production of hollow ceramic membranes by electrophoretic deposition

The present invention provides methods for producing hollow ceramic membranes by electrophoretic deposition. The hollow ceramic membranes may have a small cross-sectional area of about 1.0x10<-5 >mm<2 >to about 25 mm<2>. The cross-sectional configuration of the hollow ceramic membranes may be any geometry such as circular, square, rectangular, triangular or polygonal. The hollow ceramic membranes produced by the methods of the present invention may have multiple layers but always the innermost layer, or the first deposited layer is porous and made by electrophoretic deposition. Subsequent layers may be porous or non porous and deposited before or after sintering the first layer. If it is deposited after sintering, it may require additional sintering steps. Additional layers may be deposited by further electrophoretic deposition, sol-gel coating, dip coating, vacuum casting, brushing, spraying or other known techniques.
Owner:INNOTECH ALBERTA INC

Light-controlled electrokinetic assembly of particles near surfaces

A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte / silicon oxide / silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations. In addition, the present invention provides a procedure for the creation of material surfaces with desired properties and for the fabrication of surface-mounted optical components.
Owner:BIOARRAY SOLUTIONS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products