Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1001results about "Protein coatings" patented technology

Thermoplastic starch compositions incorporating a particulate filler component

Thermoplastic starch compositions that include a particulate filler, e.g. an inorganic filler component, and optional fibrous component The compositions include a thermoplastic phase comprising a thermoplastic starch melt that contains, at a minimum, starch blended with an appropriate plasticizing agent under conditions in order for the starch to form a thermoplastic melt. The thermoplastic phase may also include one or more additional thermoplastic polymers and other optional reactants, liquids or cross-linking agents to improve the water-resistance, strength, and/or other mechanical properties of the thermoplastic melt, particularly upon solidification. The inorganic filler component may affect the mechanical properties but will mainly be added to reduce the cost of the thermoplastic starch compositions by displacing a significant portion of the more expensive starch or starch/polymer melt. Fibers may optionally be included in order to improve the mechanical properties of the thermoplastic starch compositions. The thermoplastic starch compositions may be shaped into a wide variety of useful articles, such as sheets, films, containers, and packaging materials. Because the thermoplastic starch compositions will typically include a thermoplastic phase that is biodegradable, and because the other components will either constitute a naturally occurring mineral and optionally a natural fiber, the overall composition will typically be more environmentally friendly compared to conventional thermoplastic materials.
Owner:BIO TEC BIOLOGISCHE NATURVERPACKUNGEN

Method for producing fine particle dispersion and fine particle dispersion

Disclosed is a method for producing a fine particle dispersion such as a dispersion of metal fine particles which is superior in dispersibility and storage stability. Specifically disclosed is a method for producing a fine particle dispersion wherein fine particles of a metal or the like, having a mean particle diameter of between 1 nm and 150 nm for primary particles, are dispersed in an organic solvent. This method for producing a fine particle dispersion is characterized by comprising the steps of: reducing a metal ion by liquid phase reduction in an aqueous solution wherein the metal ion and a polymer dispersing agent are dissolved, thereby forming a fine particle dispersion aqueous solution wherein fine particles having a mean particle diameter of between 1 nm and 150 nm for the primary particles and dispersed with being coated by the polymer dispersing agent (Process 1); adding an aggregation accelerator into the fine particle dispersion aqueous solution, the resulting solution is agitated for agglomerating or precipitating the fine particles, and then the agglomerated or precipitated fine particles are separated from the aqueous solution, thereby obtaining fine particles comprised of one type or not less than two types of a metal, an alloy and a metallic compound (Process 2); and re-dispersing the thus-obtained fine particles into an organic solvent or the like which contains an organic solvent (A) as between 25% and 70% by volume having an amide group, a low boiling point organic solvent (B) as between 5% and 25% by volume having a boiling point of between 20° C. and 100° C. at a normal pressure, and an organic solvent (C) as between 5% and 70% by volume having a boiling point of higher than 100° C. at a normal pressure and comprised of an alcohol and/or a polyhydric alcohol having one or not less than two hydroxyl groups in a molecule thereof (Process 3).
Owner:FURUKAWA ELECTRIC CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products