Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1264 results about "Urine sample" patented technology

The types of urine sample you might be asked for include a random specimen, first morning specimen or timed collection. To collect a urine sample you should: label a sterile, screw-top container with your name, date of birth and the date. wash your hands. start to pee and collect a sample of urine "mid-stream" in the container.

Methods, compositions, and automated systems for separating rare cells from fluid samples

The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells from a complex fluid sample. In particular, the enrichment of fetal cells from maternal samples, such as maternal blood samples, can greatly aid in the detection of fetal abnormalities or a variety of genetic conditions. In addition, the present invention recognizes that the enrichment of rare malignant cells from patient samples, can aid in diagnosis, prognosis, and development of therapeutic modalities for patients. The invention includes microfabricated filters for filtering fluid samples and methods of enriching rare cells of fluid samples using microfabricated filters of the present invention. The invention also includes solutions for the selective sedimentation of red blood cells (RBCs) from a blood sample and methods of using selective RBC sedimentation solutions for enriching rare cells of a fluid sample. Yet another aspect of the invention is an automated system for processing a fluid sample that includes: at least one filtration chamber that includes a microfabricated filter; automated means for directing fluid flow through at least one filtration chamber of the automated system, and means for collecting enriched rare cells. The present invention also includes methods of using automated systems for separating rare cells from fluid samples. Preferred fluid samples are blood, effusion, or urine samples, and rare cells that can be enriched from such sample include nucleated red blood cells and cancer cells.
Owner:AVIVA BIOSCI

Methods, compositions, and automated systems for separating rare cells from fluid samples

The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells from a complex fluid sample. In particular, the enrichment of fetal cells from maternal samples, such as maternal blood samples, can greatly aid in the detection of fetal abnormalities or a variety of genetic conditions. In addition, the present invention recognizes that the enrichment of rare malignant cells from patient samples, can aid in diagnosis, prognosis, and development of therapeutic modalities for patients.
A first aspect of the present invention is a microfabricated filter for filtering a fluid sample. A microfabricated filter of the present invention comprises at least one tapered pore, and preferably comprises at least two tapered pores whose variation in size is 20% or less. The present invention also includes a method of enriching rare cells of a fluid sample using a microfabricated filter of the present invention.
Another aspect of the invention is solutions for the selective sedimentation of red blood cells (RBCs) from a blood sample comprising a red blood cell aggregating agent and at least one specific binding member that selectively binds RBCs. Solutions of the present invention include a combined solution for rare cell enrichment that comprise RBC aggregating agents, at least one specific binding member that selectively binds RBCs, and at least one additional specific binding member for the removal of undesirable sample components other than RBCs. The invention also includes methods of using selective RBC sedimentation solutions and combined solutions for enriching rare cells of a fluid sample.
Yet another aspect of the invention is an automated system for processing a fluid sample that includes: at least one filtration chamber that comprises or engages one or more microfabricated filters of the present invention; automated means for directing fluid flow through the one or more filtration chambers of the automated system, and means for collecting enriched rare cells. The present invention also includes methods of using an automated system for separating rare cells from a fluid sample. Preferred fluid samples are effusion, blood, or urine samples, and rare cells that can be enriched from such sample include nucleated red blood cells and cancer cells.
Owner:AVIVA BIOSCI

Method and test strips for the measurement of fat loss during weight loss programs

Disposable test strips and a wet chemistry method for measuring each of beta-hydroxybutyrate alone, combined beta-hydroxybutyrate and acetoacetate or total ketone bodies (i.e., beta-hydroxybutyrate, acetoacetate and acetone) in human bodily fluid samples, including but not limited to urine, saliva or sweat are described. The test strips need only be dipped in the sample and can be used by anyone in almost any milieu. Measurement can be made electrochemically, spectrophotometrically, fluorometrically or by comparision to a color standard. Combined acetoacetate and beta-hydroxybutyrate which account for 97-98% of total ketone bodies and may be measured in a cyclic reaction that occurs at pH about 7.0 to about 8.3 with beta-hydroxybutyrate dehydrogenase, (beta-HBD), nicotinamide adenine dinucleotide, a tetrazolium dye precursor and an electron mediator. Using this reaction, false positive results obtained from urine samples taken from patients on sulfhydryl drugs are avoided. beta-HBD from some sources was found to cause false negative results in samples (e.g. urine) containing high chloride content due to chloride inhibition of beta-HBD. Using a simple test for chloride inhibition, it was found that beta-HBD from Alcaligenes is not so inhibited. Using either beta-HBD that is not inhibited by chloride or using 10-20 times the normal concentration of this enzyme eliminates false negatives in samples having substantial chloride content, such as urine, both in the reaction described above and in other reactions disclosed for measuring each of beta-hydroxybutyrate alone, combined beta-hydroxybutyrate and acetoacetate and total ketone bodies, all of which reactions occur in the pH range of about 8.6 to about 9.5.
Owner:GUPTA SURENDRA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products