Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

618 results about "Long wave infrared" patented technology

Very-long wave infrared (VLWIR) (12 to about 30 µm, covered by doped silicon). Near-infrared is the region closest in wavelength to the radiation detectable by the human eye. mid- and far-infrared are progressively further from the visible spectrum.

Laser and middle- and long-wavelength infrared common-aperture three-band imaging system

The invention relates to a laser and middle- and long-wavelength infrared common-aperture three-band imaging system, which comprises an entrance pupil shared by each band, a primary mirror, a secondary convex mirror, a middle/long-wavelength infrared optical path imaging lens group, a laser converging light spot receiving unit, a middle- and long-wavelength infrared band beam splitter, a middle- and long-wavelength infrared dual-band imaging lens group and a detection image surface, wherein the reflection surface of the primary mirror is a concave surface, and a hole is formed in the center of the primary mirror. The system can be used for realizing the common-aperture collection of scene infrared radiation energy of the same object and laser echo energy reflected by the object; and the entrance pupil is positioned in front of the primary mirror, the secondary mirror is used for the beam splitting of laser and middle- and long-wavelength infrared bands, and a dichroic mirror is inclined to split middle-wavelength infrared light and long-wavelength infrared light, so that the system is compact in structure, the utilization rates of optical energy and space of the system are increased, the aberration correction and beam focusing of middle- and long-wavelength infrared bands are facilitated respectively, and the imaging quality is remarkably improved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Spatial large view field, superwide spectral band and multispectral imaging optical system

The invention discloses a spatial large view field, superwide spectral band and multispectral imaging optical system, which comprises a switching reflector, a main optical off-axis three-reflector system, a medium- and short-wave focus-free relaying optical system and a long-wave focus-free relaying optical system, wherein a radiation light beam of an imaging target enters from the switching reflector, and is divided into light rays in three channels, namely a visible multispectral channel, a short-wave / medium-wave channel and a long-wave infrared channel, by color division sheets after passing through the main optical off-axis three-reflector system; the light ray in the visible multispectral channel is reflected by the first color division sheet, and then full-color multispectral imaging is realized through a five-color device; the light rays in the short-wave / medium-wave channel and the long-wave infrared channel are transmitted / reflected by the second color division sheet, respectively pass through the own focus-free relaying optical systems, and then are focused on a focal surface for imaging after being subdivided by filters. The spatial large view field, superwide spectral band and multispectral imaging optical system has the advantages of large view field, large relative aperture, wide spectral range, high subdivision degree, compact structure, small volume, light weight and the like; and large-range, all-day and high-resolution dynamic and stable detection can be realized.
Owner:BEIJING RES INST OF SPATIAL MECHANICAL & ELECTRICAL TECH

Infrared/ glimmer image fusion night vision system

The invention discloses an infrared / glimmer image fusion night vision system, which consists of a glimmer object glass group, a glimmer image intensifier, an infrared object glass group, an uncooling long-wave infrared detector, an image processing circuit module, an electric signal transmission line, an OLED (organic light emitting diode) minitype display, an integrated optical prism and an eye lense system. The night vision system takes a glimmer image as the background, and the image fusion of a glimmer channel and an infrared channel is realized in a mode that a pseudo-color infrared target is optically projected. In order to obtain the good image fusion effect, the glimmer object glass group and the infrared object glass group both satisfy one time of magnifying power; an infrared image is subjected to denoising and enhancing pretreatments, target extraction and the electronic registration of the image; and then, a gray level image is subjected to pseudo-color treatment and is then output to the OLED minitype display for color display. The fused image has a clear glimmer background and an outstanding infrared target. The night vision system has the advantages of small size and light weight, can work for a long time and is especially suitable for night vehicle driving and for a single person to carry, observe and use.
Owner:KUNMING INST OF PHYSICS

Device and method for cooperatively detecting moving target by using all-optical-waveband map

The invention discloses a device and a method for cooperatively detecting a moving target by using all-optical-waveband (including ultraviolet, visible, near-infrared, medium-wave infrared and long-wave infrared) maps. The device comprises a large field-of-view two-dimensional scanning sighting telescope, a common aperture primary optical system module, an infrared imaging and spectrum forming optical subsystem module, an ultraviolet/visible/near-infrared spectrum forming and visible near-infrared imaging optical subsystem module, a short/medium/long-wave infrared spectrum measuring module, a medium-wave wide/narrow band imaging module, a visible near-infrared spectrum measuring module, a visible near-infrared imaging module, an ultraviolet measuring module, a map fusion signal processing module, a control module and a servo system. The device and the method utilizes medium-wave infrared imaging and visible near-infrared imaging for recognizing a suspected moving target and guides spectrum measurement, completes the final recognition of the suspected target with cooperation of spectrum measurement data, and solves the difficulties of the existing detection device such as incomplete detection bands, limited optical path layout, large equipment size, few types of detected moving targets and dynamic changing objects, and poor detection capability.
Owner:NANJING HUATU INFORMATION TECH

Optical system of multispectral area array CCD (Charge Coupled Device) imager

The invention discloses an optical system of a multispectral area array CCD (Charge Coupled Device) imager, relating to the field of design and manufacture of the optical system of the multispectral area array CCD imager and solving the problems that the traditional multispectral imager can only obtain spectrum information of a certain wave band of a target at the same time and can not realize the design requirements of a multispectral optical system with wide wave band range and temperature range and a long back working distance. The system consists of two sets of subsystems, a first set of subsystem realizes spectrum information of untraviolet, blue, green, red and infrared wave bands, and the system obtains information of different wave bands through two lens sets and a corresponding detector and carries out imaging; and a second set of subsystem image the obtained information by adopting two germanium lenses and a long wave infrared detector to realize spectrum information of a long wave infrared wave band. The invention realizes simultaneously imaging of a target at six wave bands by adopting two sets of optical systems and is suitable for multispectral imaging places with strict requirements on the volume and the weight, such as aviation shooting.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI

Catadioptric hybrid multispectral imaging system

The invention discloses a catadioptric hybrid multispectral imaging system, which comprises a primary mirror, a catadioptric dual-purpose secondary mirror, a wedge-shaped dichroic beam splitter, a medium wave or long wave infrared or medium-long wave infrared dual-waveband imaging mirror assembly, a medium wave or long wave infrared or medium-long wave infrared dichroic detector unit, a visible to near infrared waveband imaging mirror assembly, a visible to near infrared waveband beam splitting device and a detection unit thereof, a short wave infrared waveband imaging mirror assembly, and a short wave infrared waveband beam splitting device and a detection unit thereof, wherein a hole is formed at the center of the primary mirror, and the reflecting surface of the primary mirror is a concave surface; and the incident surface of the catadioptric dual-purpose secondary mirror is a convex surface. The system can realize imaging with common field of view and common aperture of a same object, improve the utilization rate of light energy, save space for the beam splitter and the system, prevent parasitic light from directly leaking into the imaging mirror assembly from the hole formed on the primary mirror, correct asymmetric aberration, be more conductive to realizing large aperture and the larger field of view and significantly improve the imaging quality. The imaging with the same optical axis and the common field of view can enable an image to be easy to register.
Owner:BEIJING RES INST OF SPATIAL MECHANICAL & ELECTRICAL TECH +1

Visible light/long-wave infrared broad band spectrum joint focusing optical imaging system

The invention discloses a visible light/long-wave infrared broad band spectrum joint focusing optical imaging system comprises a broad spectrum focusing window, a color separation film, a long wave infrared lens group and a visible light lens group. The color separation film and a horizontal optical axis form an angle of 45 degrees, and light incoming from the broad spectrum focusing window passes through the color separation film and the visible light lens group to image on a visible light sensor. The long wave infrared lens group is composed of a first lens, a second lens, a reflector and athird lens from an object space to an image space in sequence, the reflector is parallel to the color separation film, and infrared light in broad spectrum light passes through the color separation film and the long wave infrared lens group to image on a non-refrigeration detector. A first face of the second lens is a binary surface, a second face of the third lens is an aspheric surface, and systematic heat difference and optical aberration are removed through the design of the binary surface and the aspheric surface. The visible light/long-wave infrared broad band spectrum joint focusing optical imaging system can solve the problem that a single wave band is not high in detection accuracy, two wavebands and two lenses have optical parallax on imaging, two wavebands are big in imaging aberration, an infrared system has heat difference, and two wavebands need focusing mutually.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Integrated multi-waveband common-path synchronous continuous variable-focus optical system

The invention discloses an integrated multi-waveband common-path synchronous continuous variable-focus optical system. The optical system comprises a public front fixed group, a public zooming group and a public compensation group which are arranged in sequence along an optical axis, as well as a first group of beam splitter prisms for reflecting visible light and transmitting medium-wave infrared light and long-wave infrared light, and a second group of beam splitter prisms for reflecting long-wave infrared light and transmitting medium-wave infrared light. A common-caliber, common-path and common-variable-focus form is adopted, a visible waveband, a medium-wave waveband and a long-wave infrared waveband are zoomed synchronously and continuously along with the movement of the public zooming group in a zooming process, and the three wavebands are of the same focal lengths, zooming ratios and visual fields, thereby realizing synchronous observation, synchronous tracking and synchronous measurement of a target in the visible waveband, the medium-wave waveband and the long-wave infrared waveband. When different wavebands are needed for observing, path switching and new search of the target are unnecessary, thereby increasing the reaction speed of the optical system and preventing loss of a target moving at a high speed during path switching.
Owner:XIAN TECH UNIV

Control method and system for forest fire exploration through unmanned plane

The embodiment of the invention discloses a control method and system for the forest fire exploration through an unmanned plane. The method comprises the steps: obtaining a fusion image and the brightness temperature values of all pixels in the fusion image through the preprocessing, splicing and fusion and brightness temperature inversion of a visible image, a short-wave infrared image, a mid-wave infrared image and a long-wave infrared image; recognizing the position of an open fire point and the position of a blind fire point according to the fusion image and the brightness temperature values of all pixels in the fusion image; finally analyzing the influence scope of forest fire and the distance between the center of the forest fire and a power transmission line according to the positions of the fire points, determining the level of forest fire, and carrying out the early warning according to the level of forest fire. Compared with the prior art, the method can effectively distinguish the open fire point and the blind fire point, can carry out the early warning timely according to the level of forest fire, can effectively improve the detection rate of the forest fire and the put-out success rate of the forest fire, reduces the safety risk of fire fighters, and guarantees the safe and reliable operation of power transmission lines.
Owner:YUNNAN POWER GRID CO LTD ELECTRIC POWER RES INST

Detection method for remote sensing day and night sea fog by stationary weather satellite

The invention relates to a detection method of sea fog remotely sensed by stationary meteorological satellites in the daytime and at night. The detection method comprises the following steps: firstly receiving and processing a data file S-VISSR by utilizing the number of the stationary meteorological satellites and obtaining a GPF document containing 5 channel data after being projected through calibration and location, data amendment, latitude and longitude projection and other pretreatments; then extracting sea fog information by utilizing 4 channel data in the GPF document, 2 split window channels in a long wave infrared window region, 1 intermediate infrared channel of 3.7 Mu m and 1 visible light channel of 0.67 Mu m according to the kinematic characteristics and the spectral characteristics of the sea fog; and firstly filtering a movable cloud boundary and a medium-high cloud boundary and then filtering water body in clear sky and partial low clouds by adopting the tertiary judging method, and finally determining a sea fog region by utilizing the region growing method. The invention not only achieves the real-time monitoring of the sea fog in a wide ocean plane and the dynamic track of the sea fog region, but also provides an important basis for the shot forecast of the sea fog, thereby obtaining sea fog real-time monitoring images per hour at least.
Owner:NAT SATELLITE METEOROLOGICAL CENT +1

Long-wave infrared polarization feature extraction and fusion image enhancement method

The invention belongs to the field of infrared image processing, and relates to an image enhancement method based on long-wave infrared polarization feature extraction and fusion method. The method comprises the steps of (S1) collecting an infrared polarization image, and preprocessing the collected infrared polarization image; (S2) performing Stokes polarization state calculation on the preprocessed image in the step (S1), and calculating a polarization degree and a polarization angle according to a Stokes polarization state calculation result; (S3) carrying out completely polarized light decomposition calculation by using the polarization degree and the polarization angle; (S4) defining a polarization orthogonal difference value, setting a weighting coefficient, and extracting a polarization feature image, wherein the polarization feature image comprises a polarization parallel component image and a polarization vertical component image; and (S5) fusing the polarization feature imageand an infrared intensity image by using a non-downsampling shear wave algorithm. The method can effectively extract the polarization information of a target scene, has a good polarization feature extraction effect, performs fusion on the extracted polarization feature image and the infrared intensity image and significantly enhances the information content of the target scene.
Owner:NAT UNIV OF DEFENSE TECH

Two-color two-field infrared imaging optical system

The invention discloses a bicolor dual-view field infrared imaging optical system. The bicolor dual-view field infrared imaging optical system is characterized by consisting of five lenses including a front fixing lens set (9), a multifocal lens set (10) and a rear fixing lens set (11), wherein the front fixing lens set consists of two lenses, the multifocal lens set consists of one lens, and therear fixing lens set consists of two lenses. The multifocal lens set can axially move in front of or behind a primary image surface to realize switching between a wide view field and a narrow view field; in the five lenses, lenses with a binary diffraction surface is used as a second surface of a second lens and a second surface of a fourth lens. The bicolor dual-view field infrared imaging optical system has the advantages of simple and compact structure, small system size and less lenses, can simultaneously performing imaging at a medium wave infrared wave band with wavelength of 4-5 microns and a long wave infrared wave band with wavelength of 8-9 microns while implementing functions of searching (a wide view field of 9 degrees* 6.75 degrees) and aiming (a narrow view field of 3 degrees*2.25 degrees). The system design takes account of miniaturization and lightweight requirement of the infrared system and meets the use technology requirement of the infrared system.
Owner:KUNMING INST OF PHYSICS

Infrared dual-waveband common-aperture refraction and reflection imaging system

The invention discloses an infrared dual-waveband common-aperture refraction and reflection imaging system which is used for imaging target radiation of medium-wave spectral wavebands and long-wave spectral wavebands at infinite positions on a long-wave infrared detector and a medium-wave infrared detector. The infrared dual-waveband common-aperture refraction and reflection imaging system is characterized in that a main optical path is a long-wave infrared optical path, a reflex optical path is a medium-wave infrared optical path, the main optical path comprises a primary mirror, a secondary mirror, a first collimating mirror, a second collimating mirror, a beam splitter mirror, a first long-wave correcting mirror, an optical filter, a second long-wave correcting mirror, a third long-wave correcting mirror, a fourth long-wave correcting mirror, a fifth long-wave correcting mirror and a long-wave detector assembly which are sequentially arranged from a beam incidence direction, and the reflex optical path comprises the primary mirror, the secondary mirror, the first collimating mirror, the second collimating mirror, the beam splitter mirror, a first medium-wave correcting mirror, a second medium-wave correcting mirror, a third medium-wave correcting mirror, a medium-wave turning reflecting mirror, a fourth medium-wave correcting mirror, a fifth medium-wave correcting mirror and a medium-wave detector assembly. The infrared dual-waveband common-aperture refraction and reflection imaging system has the advantages of relatively compact structure, light weight, good imaging quality, capability of working in wide temperature ranges, and the like.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products