Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1184results about "Radiation thermography" patented technology

Use of fiber optic sensor techniques for monitoring and diagnostics of large AC generators

A method for monitoring the operating conditions of an electric generator including the entire stator core and all winding components for conditions of mechanical strain and temperature throughout the machine by means of distributive fiber optic sensors based on both Rayleigh back scattering techniques and Brillouin frequency shift fiber optic sensor analysis both of which do not have the gaps and limitations associated with standard fiber Bragg grating fiber optic point sensors, by virtue of the fact that both Rayleigh and Brillouin scans and allow accurate strain and temperature determinations at all points along standard fiber optic cables of considerable length, approximately two kilometers in the case of the Brillouin, which effectively yields many tens of thousands of sensors throughout the entire standard fiber optic cable. Raman distributive temperature sensing also has a limited application. Single mode and polarizing maintaining fibers can both be analyzed and read with any Rayleigh or Brillouin distributive fiber optic sensor laser system allowing great flexibility in sensor spatial resolution, total sensed length, resolution and other factors not possible with conventional fiber Bragg gratings. A sealed fiber collection box located outside the electric generator permits enhanced reliability and reconfiguration into any number of desirable fiber layouts necessary for specific static and dynamic measurements in an optimal manner.
Owner:INNOVATIVE DIAGNOSTIC SYST

Thermal sensing system having a fast response calibration device

PCT No. PCT/GB96/01805 Sec. 371 Date Jan. 9, 1998 Sec. 102(e) Date Jan. 9, 1998 PCT Filed Jul. 29, 1996 PCT Pub. No. WO97/05742 PCT Pub. Date Feb. 13, 1997A thermal sensing system (10) including an array of photon detectors (14) produces a detector-dependent response to irradiation. Variations in individual detector characteristics produce a fixed pattern noise which degrades an image or other response. A switchable mirror (M1) may at one position (Pcal) direct infrared radiation from a light emitting diode (20) onto the detector array (14). The diode (20) is both a negative and positive luminescent emitter, the flux emitted is current controlled to be equivalent to black body radiation at a range of temperatures both colder and hotter than ambient. Calibration relationships comprising transfer functions relating incident intensity to signal response are derived for each detector. Alternatively the mirror (M1) may be at an observation position (Pobs) and infrared radiation from a remote scene reaches the detector array (14). Resulting detector signals are converted into corrected fluxes using individual calibration relationships previously derived and an image or response with reduced fixed pattern noise is obtained.
Owner:FLIR SYSTEMS TRADING BELGIUM BVBA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products