Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

47results about How to "Reduce optical power density" patented technology

High-power laser diffraction type spatial filter

InactiveCN101738739AImproved angular spectral selectivityIncreased bandwidthOptical elementsLaser burnGrating
The invention discloses a high-power laser diffraction type spatial filter. The left side of the high-power laser diffraction type spatial filter is provided with an interstage isolation filter of which the central axis is a vertical line BC, the middle of the high-power laser diffraction type spatial filter is provided with a group of gain medium of which the central axis is a transverse line CD, the right side of the high-power laser diffraction type spatial filter is provided with a multi-pass cavity filter of which the central axis is a vertical line DE, the central axis of the entire device forms a BCDEF broken line, one optical grating which enables light beams to be deflected at 90 degrees is respectively arranged at a point B, a point C, a point D and a point E, the optical gratings are separate type volume Bragg optical gratings or double-piece integrated type optical gratings, and one reflecting mirror is arranged at a point F. The invention uses an optical grating double-pass spatial filter component which does not have a lens and a pinhole and has compact appearance to replace a pinhole filter in a multi-pass amplifier, can realize the wider width of a diffraction frequency band and can meet the requirement of short-pulse and ultrashort-pulse spatial filtering; the borne laser power is higher, and the requirement of high-power laser spatial filtering can be met, thereby eliminating the probability that laser burns out the filter component because of no lens and no pinhole in the device.
Owner:谭吉春

Low-loss large-effective area single mode fiber and manufacturing method thereof

The invention discloses a low-loss large-effective area single mode fiber and a manufacturing method of the low-loss large-effective area single mode fiber, and relates to the field of optical fibers. The low-loss large-effective area single mode fiber comprises a quartz glass cladding, an internal coating and an external coating, wherein the quartz glass cladding, the internal coating and the external coating are arranged in sequence from inside to outside; the inside of the quartz glass cladding comprises a first fiber core area, a second fiber core area, a third fiber core area, a fourth fiber core area and a refractive index concave cladding, wherein the first fiber core area, the second fiber core area, the third fiber core area, the fourth fiber core area and the refractive index concave cladding are arranged in sequence from inside to outside; the refractive index concave cladding is subjected to deposition through a PCVD process; the quartz glass cladding is manufactured through an OVD process or a sleeving process. According to the low-loss large-effective area single mode fiber and the manufacturing method of the low-loss large-effective area single mode fiber, the scattering loss of the low-loss large-effective area single mode fiber and the additional loss of the low-loss large-effective area single mode fiber in a bent state can be reduced; due to the fact that the spire distribution of fiber core basic mode electromagnetic field power is adjusted into flattop distribution, optical power density is reduced, the effective area of the low-loss large-effective area single mode fiber is enlarged, the nonlinearity of the low-loss large-effective area single mode fiber is reduced, the incident power of an optical fiber communication system is increased by 0.4-2.6 dB, and the low-loss large-effective area single mode fiber is suitable for mass production.
Owner:FENGHUO COMM SCI & TECH CO LTD +1

High-power optical fiber end cap and manufacturing method thereof

The invention provides a high-power optical fiber end cap and a manufacturing method thereof. The optical fiber end cap comprises a double-clad optical fiber, a core-free optical fiber and a quartz rod which are coaxially arranged; the quartz rod comprises a first cylindrical section, a circular table section and a second cylindrical section which are coaxially connected in sequence, the diameterof the first cylindrical section is smaller than that of the second cylindrical section; the double-clad optical fiber is connected with one end of the core-free optical fiber in a welding mode, and the other end of the core-free optical fiber is connected with one end of the first cylindrical section in a welding mode; the diameter of the cladding layer of the core-free optical fiber is larger than or equal to the diameter of the double-clad optical fiber; and the diameter of the cladding layer of the core-free optical fiber is smaller than or equal to the diameter of the first cylindrical section. The laser firstly passes through the core-free optical fiber, so that energy is expanded, and the light power density in the connecting place of the output end plane and the quartz rod is lowered; by selecting the proper length of the core-free optical fiber, the output light spot can be large enough when the laser outputs from the core-free optical fiber, so that the optical power densityon the output surface can be effectively reduced; and meanwhile, energy is not output from the side surface of the core-free optical fiber, and loss of energy is avoided.
Owner:JIANGSU UNIV

High-power fundamental transverse mode flat plate coupling optical waveguide semiconductor laser structure

The invention discloses a high-power fundamental transverse mode flat plate coupling optical waveguide semiconductor laser structure which comprises a substrate, a buffer layer, an N-type lower limiting layer, a lower waveguide layer, an active area, an interface layer, a P-type upper limiting layer, an intermediate layer, an electrode contract layer, a double channel, a passivating film layer, a P side electrode and an N side electrode. The substrate is used for the growth of all epitaxial layer materials of the laser on the substrate; the buffer layer is made on the substrate; the N-type lower limiting layer is made on the buffer layer; the lower waveguide layer is made on the N-type lower limiting layer; the active area is made on the lower waveguide layer; the interface layer is made on the active area; the P-type upper limiting layer is made on the interface area; the intermediate layer is made on the P-type limiting layer; the electrode contact layer is made on the intermediate layer; the double channel is etched on the electrode contact layer, the etching depth is kept within the lower waveguide layer, and a ridge-type table top is formed in the middle of the double channel; the passivating film layer is made on the upper surface of the electrode contact layer and the bottom and the two sides of the double channel and the passivating film layer on the ridge-type table top is disconnected; the P side electrode is made on the ridge-type table top and is in contact with the electrode contact layer; and the N side electrode is made under the substrate.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

High-power collimating lens assemblies, and methods of reducing the optical power density in collimating lens assemblies

The present invention provides improved collimating lens assemblies (32), improved methods of reducing the optical power density in collimating lens assemblies, and to improved fiber optic rotary joints (31) incorporating such improved collimating lens assemblies. The improved collimating lens assembly broadly includes: a singlemode fiber (38) terminating in a distal end; a step-index multimode fiber (44) having a proximal end abutting to the singlemode fiber distal end, and having a distal end; a graded-index multimode fiber (45) having a proximal end abutting the step-index multimode fiber distal end, and having a distal end; and a collimating lens (34) longitudinally spaced from the graded-index multimode fiber distal end by an intermediate air gap (43), and operatively arranged to collimate light rays emanating from the graded-index multimode fiber distal end. The improved collimating lens assembly is characterized by the fact that there is no epoxy, silicone gel or index-matching material between the graded-index multimode fiber distal end and the collimating lens. Rather, these various elements are fusion-spliced together. The improved collimating lens assembly is capable of handling energy levels that are typically used in various wavelength division multiplexing techniques.
Owner:MOOG INC

High-power polarization-maintaining optical fiber and preparation method thereof

The invention relates to a high-power polarization-maintaining optical fiber and a preparation method thereof, and belongs to the technical field of polarization-maintaining optical fibers. The crosssection structure of the optical fiber sequentially comprises a fiber core (102), a first cladding (104), a second cladding (105), an outer cladding (106) and an external coating (107) from inside tooutside, the fiber core (102) is fluorine-doped quartz containing rare earth, alkali metal and a dispersing agent, and the first cladding (104) is filled with two shallow fluorine-doped quartz rods symmetrically distributed along the fiber core (102) to form a fluorine-doped area (101); the first cladding (104) is also filled with two stress rods which are symmetrically distributed along the fibercore (102) to form a stress area (103); and the symmetry axis of the fluorine-doped area (101) and the symmetry axis of the stress area (103) perpendicularly intersect at the center of the fiber core(102). According to the optical fiber, the existence of spiral light can be reduced to a greater extent, the input of pump light is increased, the reflection frequency of a cladding is improved, thereflection path is shortened, and the effects of reducing the optical power density and improving the laser output power are achieved.
Owner:JIANGSU FASTEN OPTOELECTRONICS TECH

Super-continuum spectrum optical fiber laser output apparatus and laser system

The invention provides a super-continuum spectrum optical fiber laser output apparatus and a laser system. The output apparatus comprises a laser transmission module, a returned-light processor, an optical stripper, a thermal processor and a packaging module; the laser transmission module comprises transmission optical fibers, an output end cap and a light beam focusing collimation part that are connected in sequence, and a photoelectric detector arranged on one side, close to the transmission optical fibers, of the output end cap; the photoelectric detector is used for monitoring the returned-light power at the output end of the output end cap; the returned-light processor is arranged on one side, connected with the transmission optical fibers, of the output end cap; the optical stripper is arranged on the transmission optical fibers close to the output end cap; the thermal process is arranged below the laser transmission module; and the packaging module is used for packaging the laser transmission module, the returned-light processor, the optical stripper and the thermal processor. According to the super-continuum spectrum optical fiber laser output apparatus, high-power and broadband spectrum stable laser output can be realized by performing special treatment on the output end of the whole apparatus, and by performing prompt processing on the returned light and thermal accumulation.
Owner:BEIJING UNIV OF TECH

A high-power optical fiber end cap and its manufacturing method

The invention provides a high-power optical fiber end cap and a manufacturing method thereof. The optical fiber end cap comprises a double-clad optical fiber, a core-free optical fiber and a quartz rod which are coaxially arranged; the quartz rod comprises a first cylindrical section, a circular table section and a second cylindrical section which are coaxially connected in sequence, the diameterof the first cylindrical section is smaller than that of the second cylindrical section; the double-clad optical fiber is connected with one end of the core-free optical fiber in a welding mode, and the other end of the core-free optical fiber is connected with one end of the first cylindrical section in a welding mode; the diameter of the cladding layer of the core-free optical fiber is larger than or equal to the diameter of the double-clad optical fiber; and the diameter of the cladding layer of the core-free optical fiber is smaller than or equal to the diameter of the first cylindrical section. The laser firstly passes through the core-free optical fiber, so that energy is expanded, and the light power density in the connecting place of the output end plane and the quartz rod is lowered; by selecting the proper length of the core-free optical fiber, the output light spot can be large enough when the laser outputs from the core-free optical fiber, so that the optical power densityon the output surface can be effectively reduced; and meanwhile, energy is not output from the side surface of the core-free optical fiber, and loss of energy is avoided.
Owner:JIANGSU UNIV

Low-loss large-effective area single mode fiber and manufacturing method thereof

The invention discloses a low-loss large-effective area single mode fiber and a manufacturing method of the low-loss large-effective area single mode fiber, and relates to the field of optical fibers. The low-loss large-effective area single mode fiber comprises a quartz glass cladding, an internal coating and an external coating, wherein the quartz glass cladding, the internal coating and the external coating are arranged in sequence from inside to outside; the inside of the quartz glass cladding comprises a first fiber core area, a second fiber core area, a third fiber core area, a fourth fiber core area and a refractive index concave cladding, wherein the first fiber core area, the second fiber core area, the third fiber core area, the fourth fiber core area and the refractive index concave cladding are arranged in sequence from inside to outside; the refractive index concave cladding is subjected to deposition through a PCVD process; the quartz glass cladding is manufactured through an OVD process or a sleeving process. According to the low-loss large-effective area single mode fiber and the manufacturing method of the low-loss large-effective area single mode fiber, the scattering loss of the low-loss large-effective area single mode fiber and the additional loss of the low-loss large-effective area single mode fiber in a bent state can be reduced; due to the fact that the spire distribution of fiber core basic mode electromagnetic field power is adjusted into flattop distribution, optical power density is reduced, the effective area of the low-loss large-effective area single mode fiber is enlarged, the nonlinearity of the low-loss large-effective area single mode fiber is reduced, the incident power of an optical fiber communication system is increased by 0.4-2.6 dB, and the low-loss large-effective area single mode fiber is suitable for mass production.
Owner:FENGHUO COMM SCI & TECH CO LTD +1

Projection type laser heating system and 3D printer

The invention discloses a projection type laser heating system and a 3D printer. The projection type laser heating system comprises an infrared laser, a laser power adjustment device, a beam splittergroup, not less than two projection assemblies and a workbench; the workbench is provided with a preheating device and is used for laying a powder material; the laser power adjustment device comprisesa first rotating clamping assembly, a power meter, a first half-wave plate, a polarization beam splitter mirror and a beam expander group; the first half-wave plate, the polarization beam splitter mirror and the beam expander group are sequentially distributed in the same direction; the first half-wave plate is arranged on the first rotating clamping assembly; the not less than two projection assemblies are arranged at the exit direction of the beam splitter group; and each projection assembly comprises a DMD chip. The projection type laser heating system further comprises a control system; and the control system controls the first rotating clamping assembly and the DMD chips, and independently controls the projection shape and direction of each DMD chip, so that the shapes of the DMD chips projected to the workbench are the same and are coincident. With the adoption of the technical scheme, projection type laser heating can be realized in 3D printing.
Owner:SHENZHEN UPRISE 3D TECH CO LTD

Mode control semiconductor device and preparation method thereof

ActiveCN113872049AEasy to manufactureReduce light limiting factorOptical wave guidanceCoupling lossDevice material
The invention provides a mode control semiconductor device and a preparation method thereof, the mode control semiconductor device is provided with a front cavity surface and a rear cavity surface which are oppositely arranged, and the mode control semiconductor device comprises a semiconductor substrate layer, an active layer positioned on the semiconductor substrate layer, a first limiting layer and a second limiting layer located on the semiconductor substrate layer and located on the two sides of the active layer respectively, a first waveguide layer located between the first limiting layer and the active layer, a second waveguide layer located between the second limiting layer and the active layer, and having the thickness smaller than or equal to that of the first waveguide layer, and a first dimming layer located in the part, adjacent to the front cavity surface, of the second limiting layer; the refractive index of the first dimming layer is smaller than that of the second limiting layer, and the width of the first dimming layer is gradually increased in the direction from the rear cavity surface to the front cavity surface. According to the mode control semiconductor device, the optical catastrophe damage resistance threshold power of the front cavity surface is improved, and meanwhile, the coupling loss, the production process complexity and the cost are reduced.
Owner:SUZHOU EVERBRIGHT PHOTONICS CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products