Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

686 results about "Acousto-optic modulator" patented technology

An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters (see Brillouin scattering) off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in Sum-frequency generation or Difference-frequency generation between phonons and photons.

COTDR (coherent detection based optical time-domain reflectometry) fused long-distance coherent detection brilouin optical time-domain analyzer

The invention discloses a COTDR (coherent detection based optical time-domain reflectometry) fused long-distance coherent detection brilouin optical time-domain analyzer which comprises a narrow-linewidth laser, two couplings, a microwave signal source, an electro-optic modulator, an isolator, a long-distance sensing optical fiber, an optical circulator, a 3 db coupling, a pulse modulator, an Er-doped fiber amplifier, a scrambler, a pulse signal generator, a balancing photoelectric detector, an electrical frequency spectrum analyzer, a data processing module and an acousto-optic modulator. According to the invention, the signal-to-noise ratio of BOTDA (brilouin optical time domain analysis) is improved by using a coherent detection method, a non-local effect of a BOTDA system is reduced in a double-sideband detection mode, and the sensing distance is more than 70 km under the condition of no light amplification such as raman; and according to the invention, the COTDR is fused to a coherent detection based BOTDA system, and the system can run in a breakpoint testing mode, so that the defect that the traditional BOTDA can not run when a sensing fiber has breakpoints and can not carry out positioning on breakpoints is effectively overcome, thereby enhancing the adaptability and practicability of the sensing system.
Owner:NANJING UNIV

Optical fiber distributed disturbance sensor

The invention discloses an optical fiber distributed disturbance sensor which comprises an optical fiber laser, a bidirectional distributed Raman amplification unit and a photoelectric detection and signal processing unit, wherein an output end of the optical fiber laser is connected with a first coupler; two output ends of the first coupler are respectively connected with an acoustic optical modulator and a third coupler; the bidirectional distributed Raman amplification unit is connected with the acoustic optical modulator by a first circulator and is connected with the third coupler by the first circulator; the photoelectric detection and signal processing unit is connected with the third coupler and used for receiving an interference-enhanced optical signal in the third coupler, converting the optical signal into an electric signal and carrying out subsequent data processing. In the optical fiber distributed disturbance sensor, the back scattering light intensity and the signal-to-noise ratio of the tail end of the optical fiber can be improved by the bidirectional distributed Raman amplification structure so as to improve the sensing distance of the optical fiber distributed disturbance sensor; and the light power received by a detector can be improved through the interference of a part of continuous light output by a light source and the back scattering light, so as to improve the signal-to-noise ratio of the system. The sensor is a combination of conventional photoelectric devices, has a simple structure and is easy to realize.
Owner:BEIHANG UNIV

Device for measuring linewidth of narrow linewidth laser based on optical fiber time-delay self heterodyne method as well as method for measuring thereof

The invention discloses a device of measuring the line-width of a laser with narrow line-width and a method of measuring the line-width based on a optical fiber delay self-heterodyne method; in the hardware device, an optical fiber delay line is connected between a first and a second couplers; an acousto-optic modulator is connected between the first and the second couplers; the measured laser is connected to the input of the first coupler, and a photoelectric detector is connected to the output of the second coupler; the photoelectric detector is connected with a spectrum analyzer. In the line-width measurement, simulation models of the line-width triangle v of the laser and the spectrum-width triangle f of the photoelectric current heterodyne signal are built in the frequency shift delay self-heterodyne methodology, and the function relation between the line-width triangle v of the laser and the spectrum-width triangle f of the photoelectric current heterodyne signal is obtained fitting of the three-level proportion function model. The invention presents that with the short optical fiber delay self-heterodyne method, the device can eliminate the deficiency of greatly reduced measuring precision because of not enough delayed time in the delay self-heterodyne method when the length of the delay optical fiber is less than 6 times coherence length of the laser, so as to provide an effective method of precisely measuring the line-width of the laser with narrow line-width in projects.
Owner:BEIHANG UNIV

Rubidium atomic magnetometer and magnetic field measuring method thereof

The invention discloses a rubidium atomic magnetometer and a magnetic field measuring method. Based on the principle of nonlinear magneto-optic rotation, and through combination of timing control and tracking type frequency locking control, the atomic magnetometer achieves a large dynamic measurement range, high magnetic field sampling rate and high sensitivity. A DSP timing control module controls on-off of an acousto-optic modulator and a radio-frequency signal source in the physical part of the rubidium atomic magnetometer according to timing combination to adjust the magnetic field sampling rate N. The DSP timing control module further controls acquisition triggering of a data acquisition card. A calculation unit gets the Larmor precession frequency (f) through fast Fourier transform with use of a received rubidium atom Larmor precession free relaxation signal, and further calculates the value of an external magnetic field. The calculation unit selects a high magnetic field sampling rate module or a low magnetic field sampling rate module before measurement according to the pre-judged dynamic range of a to-be-measured magnetic field, and sets whether a tracking type frequency locking work mode is used when the low magnetic field sampling rate module is selected. In the working process, data is acquired and processed, and the value of the magnetic field is output.
Owner:LANZHOU INST OF PHYSICS CHINESE ACADEMY OF SPACE TECH

Double-beam multi-functional z scanning optical non-linear measuring device and method

The invention discloses a double-beam multi-functional z scanning optical non-linear measuring device and a double-beam multi-functional z scanning optical non-linear measuring device method. The device uses two light sources and can conveniently switch the light sources; an adjustable attenuation slice is adopted, so laser power is continuously adjustable from 0 and 100 percent; an acoustic optical modulator and a signal generator are adopted, so the pulse width and pulse period of emergent laser are adjustable; and transmission open hole and transmission closed hole data of a sample can be measured and reflecting open hole and transmission open hole data of the sample can also be measured. The device and the method not only can measure nonlinear absorption coefficient and nonlinear refractive index of a transparent sample, but also can measure nonlinear refractive index of a nontransparent sample; and a cold light source serving as an illumination light source is added into the device, a CCD camera is used for observing surface appearance of the sample and an optical filter is used for filtering the effect of the laser, so the measuring accuracy and correctness of the nonlinear absorption coefficient and nonlinear refractive index of the transparent sample and a partially transparent sample are enhanced.
Owner:SHANGHAI INST OF OPTICS & FINE MECHANICS CHINESE ACAD OF SCI

Intensity distribution type demodulation system and distribution type sensing optical fiber

A distribution type sensing optical fiber is characterized in that thousands of fiber gratings with ultra-low reflectance are carved on a common single-mode fiber, so that the common single-mode fiber and the fiber gratings are integrated; the reflectance R of the fiber gratings is set to be 0.1-1%, and accordingly multi-path reflection is effectively lowered. An intensity distribution type demodulation system comprises a distribution type feedback semiconductor laser device, an acousto-optic modulator, a circulator, a coupler, the distribution type sensing optical fiber, a photoelectric detector and an intensity modulation device. The distribution type feedback semiconductor laser device sends out continuous laser into the acousto-optic modulator, the laser is modulated into pulse laser with the pulse width of W, the pulse laser enters the circulator and sequentially travels through a first grating, a second grating, a third grating to the Nth grating on the distribution type sensing optical fiber, reflected light enters an unbalance interferometer from the C3 end of the circulator for interference, interference light output by the unbalance interferometer enters the photoelectric detector, and the photoelectric detector outputs electric signals to an intensity demodulation device.
Owner:LASER RES INST OF SHANDONG ACAD OF SCI

Self-excited atomic magnetic sensor for liquid crystal phase compensation and magnetic field measurement method

The invention discloses a self-excited atomic magnetic sensor for liquid crystal phase compensation and a magnetic field measurement method, which are used for a magnetometer. The self-excited atomicmagnetic sensor comprises a pumping light path perpendicular to the direction of the magnetic field, a probe light path along the direction of the magnetic field, and a circuit closed loop. The pumping light path sequentially comprises an atomic air chamber, a first polarizer, an acousto-optic modulator, and a laser. The probe light path sequentially comprises a photoelectric detector, an atomic air chamber in the pumping light path, a second wave plate1 / 4, a liquid crystal, a first wave plate1 / 4, a second polarizer, and a laser. The closed loop portion of the circuit comprises a photoelectricdetector, an amplifying comparator, a power driver, an acousto-optic modulator, and a counter. According to the liquid crystal phase compensation scheme, a phase shift caused by a circuit coil can beavoided, a phase shift of a larger range magnetic field can be achieved, and the problem that the circuit is unfavorable in the phase shift is solved by combining a light intensity modulation magnetometer and a self-excited magnetometer, the response speed is high, the liquid crystal phase compensation scheme is suitable for the various atomics, and the application value is high.
Owner:PEKING UNIV

Dual-wavelength superheterodyne-interference wide-range high-precision real-time displacement measuring system and method

The invention discloses a dual-wavelength superheterodyne-interference wide-range high-precision real-time displacement measuring system and method. The system is composed of two lasers between which the wavelength difference is deltalambda, three polarization splitting prisms, four splitting prisms, two acousto-optic modulators, four 1/4 waveplates, five planar mirrors, three Polaroids, a super-narrowband filter plate, two large-bandwidth transimpedance photoelectric detectors, two low-bandwidth high-sensitivity photoelectric detectors, a reference reflector, a measured reflector, a signal processing circuit and a host computer. According to the invention, a synthesized wavelength interference signal generated by dual wavelengths is used to improve the measuring range of the system, so that the measuring range of the system is greater than the range of single-wavelength interference; a superheterodyne interference method is used to demodulate and filter output signals, the phase of the synthesis wavelength can be measured directly, and real-time measurement is realized; and the super-narrowband filter plate is used to collect single-wavelength interference signals, and the precision of single-wavelength interference measurement is ensured while the measuring range is widened.
Owner:ZHEJIANG UNIV

Collinear femto-second laser polarized pump detecting system

ActiveCN101446687AGuaranteed spatial coherenceAvoid problems adjusting beam directionLaser detailsMirrorsRotary stagePhotodetector
The invention relates to a collinear femto-second laser polarized pump detecting system, comprising that a pulse laser is output by a polarized output pulse laser; the laser is rotated in the polarization direction by a wave plate; a light-splitting device divides the laser beam into two beams vertical to each other in the polarization direction; a reflector receives and reflects the laser beams; an acoustooptic modulator modulates the laser beams; an aperture transmits the modulated laser beams; an acoustooptic modulator driver transmits modulation signals for the acoustooptic modulator; an electrically controlled travelling carriage moves forward and backward; an analyzer transmits the laser beams which are vertical to each other in the polarization direction; a photodetector receives the laser transmitted by the analyzer; a magnet fixes an adjusting rack so as to fix a sample; a focusing lens irradiates the laser on the surface of the sample; and an electrically controlled revolving stage fixes the wave plate. The invention combines the two beams of light vertical to each other in the polarization direction by polarized coupling; therefore, the system can ensure spatial coherence of the two beams of light on the sample, thereby avoiding the problem of adjusting direction of light beam; thus, the operation is simpler.
Owner:江苏中国科学院能源动力研究中心 +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products