Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

198 results about "Arsenic sulfide" patented technology

Arsenic sulfide may refer to: .

Method for metallic arsenic production directly through reducing sulfur-fixed roasting of arsenic sulfide residues

The invention discloses a method for metallic arsenic production directly through reducing sulfur-fixed roasting of arsenic sulfide residues. The arsenic sulfide residues produced in the acidic wastewater purifying working procedure of a copper smelting plant serve as a raw material, meanwhile cupric oxide powder and a reducing agent are added, low-temperature reducing sulfur-fixed roasting is conducted after metallurgy calculation and ingredient mixing are conducted, and volatility of arsenic is utilized to enable roasted products to be subjected to vacuum separation in the reducing atmosphere so that the crude metal arsenic and distillation residues can be obtained; and distillation residues are subjected to a reselection technique for separation to obtain multi-metal powder and tailings, and the tailings are subjected to a flotation technique to obtain final residues and copper sulfide concentrates. According to the method for metallic arsenic production directly through reducing sulfur-fixed roasting of the arsenic sulfide residues, efficient arsenic removal of the arsenic sulfide residues can be achieved, harmless high-value products of the arsenic are directly produced, the process is short, energy consumption is low, the process is clean, and the direct recovery rate of the metal arsenic reaches up to 96.45%; and meanwhile, recovery of valuable metal existing in the arsenic sulfide residues is completed, and the cupric oxide powder is recovered in a high-quality copper sulfide concentrate mode finally.
Owner:广西河池鑫银环保科技有限公司

Hydrothermal stabilized curing treatment method of arsenic sulfide residue water

The invention provides a hydrothermal stabilized curing treatment method of arsenic sulfide residue water. According to the method, the liquid-solid ratio, pH and redox potential of arsenic sulfide residues are adjusted, then the arsenic sulfide residues enter a high-temperature and high-pressure hydrothermal reaction kettle for a curing reaction, and hydrothermal stabilized curing of the arsenic sulfide residues is realized by controlling the reaction temperature, reaction pressure, stirring rate, reaction time, cooling rate and cooling manner. The method is simple in treatment process and low in cost and has obvious economic and environment benefits. The arsenic sulfide residues produced in acid arsenic wastewater sulfidizing in smelting, electroplating, fertilizer (phosphate fertilizer) production, chemical engineering and other industries are used as the object, after hydrothermal stabilized curing treatment, the arsenic leaching toxicity (see sulfuric acid and nitric acid method, the leaching method in HJT 299-2007) concentration can be decreased to 1 mg/L or below, the compressive strength can reach 10 MPa or above, the specification of solid waste identification standard-leaching toxicity identification (GB5085.3-2007) is conformed, and the hazardous waste landfill pollution control standard (GB18598-2001) can be met.
Owner:CENT SOUTH UNIV

Method for preparing arsenic trioxide from arsenic sulfide waste

The invention provides a method for preparing arsenic trioxide from arsenic sulfide waste. The arsenic sulfide waste is soaked in a sodium hydroxide solution to extract arsenic sulfide, arsenic sulfide mixes with an excessive amount of arsenic acid, and the mixture reacts at a temperature ranging from 40 DEG C to 95 DEG C for 0.5 to 3 hours, to produce a mixture containing arsenous acid and elemental sulfur; the mixture containing arsenous acid and elemental sulfur mixes with 2 to 5 times (by mass) of water and then oxygen gas is introduced so that arsenous acid is oxidized into arsenic acid, and the reaction product is filtered to remove elemental sulfur and thus to produce an arsenic acid solution; and the arsenic acid solution is reduced by sulfur dioxide gas to arsenous acid with a lower solubility, the reaction liquid is distilled under a reduced pressure to produce a saturated solution of arsenous acid, the saturated solution of arsenous acid is cooled so that arsenous acid is crystallized and then filtered to produce a filter cake of arsenous acid, and the filter cake of arsenous acid is dried and pulverized to obtain an arsenic trioxide product. The method has a short process flow, increases the recovery rate of arsenic, avoids the production of secondary pollutants, adopts simple equipment, greatly reduces the cost of arsenic recovery and is worthy to be widely applied.
Owner:JIANGSU ZHONGKE MACHINERY

Gradient arsenic removing method for high-arsenic metallurgical wastes

The invention provides a gradient arsenic removing method for high-arsenic metallurgical wastes, which is generally suitable for comprehensive arsenic removing treatments of high-arsenic smoke dust generated in the smelting process of lead, zinc, antimony, copper, tin and the like, high-arsenic anode mud generated in the electrolytic process of wet lead, silver, copper and the like and other metallurgical wastes. The method comprises two stages of water leaching arsenic removal and oxidizing acid leaching arsenic removal and specifically comprises the following steps of: first, selectively dissolving out free arsenic trioxide and water soluble arsenate (like sodium arsenate and potassium arsenate) through water leaching; and then further leaching out indissolvable arsenate and arsenic sulfide in the water leaching residue as well as little incomplete arsenic trioxide dissolved out by water by using a mixed leaching liquor of acid and water soluble oxidizing agent. The method provided by the invention has the advantages of low consumption of acid and alkali, high arsenic removing efficiency, safety, environment friendliness and suitability for arsenic removing treatment of various arsenic contained metallurgical wastes, in particular for arsenic removing treatment of the smoke dust with high content of free arsenic trioxide.
Owner:HUNAN ZHANTAI NON FERROUS METALS

Stabilizing treatment method for sulfide arsenic-removed dregs

The invention discloses a stabilizing treatment method for sulfide arsenic-removed dregs. The stabilizing treatment method comprises the following steps: mixing cement clinker, mineral slag and copper slag in a ratio of parts by mass being (25-30) to (60-70) to (5-10), carrying out ball-milling on the materials, and enabling the materials to pass through a 180-mesh square hole sieve with weight of screen residues being 5wt%, thereby preparing a gel material; mixing arsenic sulfide slag and carbide slag in a dry-weight mass ratio being 1 to (1.0-1.2), and ageing and pre-treating the arsenic sulfide slag and carbide slag for 24 hours; preparing the pre-treated arsenic sulfide slag and the self-made gel material in a ratio of parts by mass being (25-35) to (65-75), adding calcium chloride with gel material amount being 0.4-0.5wt% or a mixture of calcium chloride and sodium chloride as an additive, controlling moisture content of materials to be 20-22wt%, mixing the materials on a horizontal type stirrer to macroscopically homogenize the materials, putting the homogenized materials into a continuous kneading extruder to forcibly mix, extrude, cut, naturally cure and carry out steam curing for 10 hours under pressure of 0.8-1.0MPa, and carrying out a toxicity leaching test on a solidified body according to GB5085.3-2007 to enable the solidified object to meet stock-piling or filling requirements.
Owner:KUNMING UNIV OF SCI & TECH +1

Stable curing method of strongly acidic arsenic sulfide waste residues

The invention discloses a stable curing method of strongly acidic arsenic sulfide waste residues. The stable curing method comprises the following steps: (1) adding heavy-metal sludge to to-be-treated strongly acidic arsenic sulfide residues, and stirring, so as to obtain muddy materials; (2) adding calcium hydroxide powder to the muddy materials obtained in the step (1) in the state of stirring, and continuing to stir until all yellow substances in the muddy materials disappear; (3) adding yellow sand and cement to the materials obtained after stirring in the step (2); (4) cooling the stirred materials obtained in the step (3) to room temperature, transferring to a forming die, taking out from the die after forming, and curing at room temperature, so as to obtain solidified bodies which conforms to the landfill standard. According to the stable curing method, the heavy-metal sludge is used as an arsenic stabilizer, so as to control waste by waste; sources of the materials such as the heavy-metal sludge, the lime, the cement and the yellow sand required for treating the strongly acidic arsenic sulfide waste residues are wide, and additionally, other drugs do not need to be added; compared with other methods, the stable curing method has the advantage of low treatment cost.
Owner:扬州杰嘉工业固废处置有限公司

Method for potential controlled selection separation of copper refinery ash

The invention relates to a method for potential controlled selection separation of copper refinery ash. The copper refinery ash is screened and then subjected to oxidizing leaching in a sulfuric acid system. An oxidizing agent is added to control the metal ion mixed potential of slurry, copper, arsenic, zinc and other metal are dissolved into a solution, and lead, bismuth and other metal precipitate and enter leaching residues. The metal ion mixed potential and the pH value of a leachate are simultaneously controlled, so that copper sulfide concentrate is produced through precipitation. The metal ion mixed potential and the pH value of copper-removed liquid are simultaneously controlled, so that arsenic sulfide products are produced through precipitation. The metal ion mixed potential and the pH value of arsenic-removed liquid are simultaneously controlled, so that zinc sulfide concentrate is produced through precipitation. Zinc-removed liquid is subjected to wastewater treatment and then discharged after reaching the standard. According to the method, the potential controlled oxidizing leaching and potential controlled sulfide precipitation ways are simultaneously adopted for recovering valuable metal step by step, the selection separation effect, which cannot be achieved by independently using the ways, of the valuable metal in the copper refinery ash is achieved, and the leaching rates of copper, arsenic and zinc are larger than 98.0%.
Owner:CENT SOUTH UNIV

Combined treatment method for copper smelting soot and polluted acid

The invention discloses a combined treatment method for copper smelting soot and polluted acid. The method includes the steps that after the copper smelting soot and the polluted acid are mixed for pulp conditioning, an oxidizing agent is added for controlled-potential oxidization leaching, so that copper, arsenic, zinc and other metal in the copper soot are dissolved to enter leachate, and lead, bismuth and other metal are precipitated to enter a reaching residue; then an oxidizing agent is added into the leachate so that As(III) in the solution can be completely oxidized into As(V); afterwards, sodium sulphide is added, so that the copper in the solution is precipitated in the form of copper sulphide to produce copper concentrate, and a reducing agent is added into the copper-removed solution so that the As(V) in the solution can be completely reduced into As (III); then sodium sulphide is added so that the arsenic in the solution can be precipitated in the form of arsenic sulfide; and finally the arsenic-removed solution is neutralized with alkaline and then is discharged after reaching the standard. By the adoption of the combined treatment method, controlled-potential oxidization leaching, controlled-potential oxidization sulfurization and reduction sulfurization are simultaneously combined to be used for step-by-step separation and recovery of valuable metal in the copper smelting soot and polluted acid, and therefore waste in the system can be recycled, and the purpose of using waste to treat waste is achieved.
Owner:CENT SOUTH UNIV

Method for recycling valuable elements in acidic biological oxidation solution containing arsenic, iron and sulfur

The invention relates to a method for recycling valuable elements in an acidic biological oxidation solution containing arsenic, iron and sulfur and belongs to the field of hydrometallurgy. The method comprises the following steps: performing three-stage counter-current extraction on the oxidation solution and an extracting agent so that iron ions in the oxidation solution can turn into an organic phase so as to be separated and recycled; adding a precipitator to the iron-removed raffinate, and concentrating the elements such as arsenic, sulfur and a trace amount of copper, lead, zinc and iron in neutral dregs; leaching the ions of arsenic, copper, lead, zinc, iron and the like from the neutral dregs obtained after solid and liquid separation by using a sulfuric acid solution, and then performing solid and liquid separation to obtain a calcium sulfide product; adding sodium sulfide to a sulfuric acid leaching solution, precipitating arsenic ions in the solution in the form of arsenic sulfide and recycling arsenic in the form of a arsenic sulfide product after solid and liquid separation; and adding sulfuric acid to the arsenic-precipitated acidic solution, and repeating the step of leaching the arsenic in the neutral dregs. The method has the advantages that the used raw materials are easy to get and low in price; the technological process is simple and practical; comprehensive recovery rate of the valuable elements is high; and zero emission of wastes is realized.
Owner:CHANGCHUN GOLD RES INST

Process for recovering lead, zinc and cadmium in soot on recovery section in process of treating waste acid generated in lead smelting

The invention relates to the field of nonferrous metal smelting and particularly relates to a process for recovering lead, zinc and cadmium in soot on a recovery section in the process of treating waste acid generated in lead smelting. The soot of a reduction furnace is subjected to a leaching reaction by using arsenic sulfide removal waste acid in the lead smelting industry to generate lead slag to be recovered, and then, the leaching agent is continued to be neutralized by using sodium sulphide and sodium hydroxide to generate high-grade zinc and cadmium slag to be recovered. According to the invention, the waste acid is used for separating the lead, zinc and cadmium in the soot of the reduction furnace for lead smelting, so that the operation cost is low; the problem of production operation damage caused by circulated accumulation of the zinc and cadmium in lead smelting is solved and the pressure of a lead smelting system is relieved under the condition of low cost; and the lead slag which is low in arsenic content and suitable for being treated by a lead system and the zinc and cadmium slag which is suitable for being treated by a zinc system can be generated, and meanwhile, the waste acid is also treated, so that not only is the treatment cost of the waste acid reduced, but also the treatment difficulty is lowered.
Owner:HENAN YUGUANG GOLD & LEAD

Copper smelting hazardous waste co-processing and valuable metal comprehensive recovery method

The invention provides a copper smelting hazardous waste co-processing and valuable metal comprehensive recovery method which comprises the following steps of firstly, carrying out atmospheric pressure-pressurization two-stage countercurrent leaching on copper smelting smoke to obtain atmospheric pressure leachate and lead-silver-bismuth slag, and carrying out electrodeposition pre-copper removalon the atmospheric pressure leachate to obtain electrocoppered and pre-decoppered liquid; then adding arsenic sulfide slag into the pre-decoppered liquid for replacement and copper precipitation to obtain copper sulfide concentrate and copper precipitation post-liquid; and introducing SO2-containing flue gas into the copper precipitation post-liquid for reduction and arsenic precipitation, and obtaining arsenic trioxide and arsenic precipitation post-liquid. According to the copper smelting hazardous waste co-processing and valuable metal comprehensive recovery method provided by the invention, the waste residue recycling and harmless processing degree is high, the valuable metal comprehensive recovery effect is good, no waste acid, waste water or hazardous solid waste is generated in thewhole process, a new path is provided for copper smelting hazardous waste co-processing, and wide application prospects are achieved.
Owner:BEIJING MINING & METALLURGICAL TECH GRP CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products