Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

242 results about "Genetics manipulation" patented technology

Pharmaceutical proteins, human therapeutics, human serum albumin, insulin, native cholera toxic b submitted on transgenic plastids

Transgenic chloroplast technology could provide a viable solution to the production of Insulin-like Growth Factor I (IGF-I), Human Serum Albumin (HSA), or interferons (IFN) because of hyper-expression capabilities, ability to fold and process eukaryotic proteins with disulfide bridges (thereby eliminating the need for expensive post-purification processing). Tobacco is an ideal choice because of its large biomass, ease of scale-up (million seeds per plant), genetic manipulation and impending need to explore alternate uses for this hazardous crop. Therefore, all three human proteins will be expressed as follows: a) Develop recombinant DNA vectors for enhanced expression via tobacco chloroplast genomes b) generate transgenic plants c) characterize transgenic expression of proteins or fusion proteins using molecular and biochemical methods d) large scale purification of therapeutic proteins from transgenic tobacco and comparison of current purification/processing methods in E. coli or yeast e) Characterization and comparison of therapeutic proteins (yield, purity, functionality) produced in yeast or E. coli with transgenic tobacco f) animal testing and pre-clinical trials for effectiveness of the therapeutic proteins. Mass production of affordable vaccines can be achieved by genetically engineering plants to produce recombinant proteins that are candidate vaccine antigens. The B subunits of Enteroxigenic E. coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are examples of such antigens. When the native LTB gene was expressed via the tobacco nuclear genome, LTB accumulated at levels less than 0.01% of the total soluble leaf protein. Production of effective levels of LTB in plants, required extensive codon modification. Amplification of an unmodified CTB coding sequence in chloroplasts, up to 10,000 copies per cell, resulted in the accumulation of up to 4.1% of total soluble tobacco leaf protein as oligomers (about 410 fold higher expression levels than that of the unmodified LTB gene). PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that chloroplast synthesized CTB assembled into oligomers and was antigenically identical to purified native CTB. Also, GM1,-ganglioside binding assays confirmed that chloroplast synthesized CTB binds to the intestinal membrane receptor of cholera toxin, indicating correct folding and disulfide bond formation within the chloroplast. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed. The introduced gene was stably inherited in the subsequent generation as confirmed by PCR and Southern blot analyses. Incrased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant based oral vaccines and fusion proteins with CTB needing oral administration a much more practical approach.
Owner:AUBURN UNIV +1

Immune genetic algorithm for AUV (Autonomous Underwater Vehicle) real-time path planning

The invention relates to a real-time path planning method of AUV (Autonomous Underwater Vehicle), in particular to a method for carrying out online, real-time local path planning according to an online map in an AUV real-time collision preventation process. The method comprises the steps of: setting the quantity of small populations according to the quantity of path points of the AUV, initializing; carrying out immune selection on each small population to obtain subgroups; carrying out genetic manipulation on one subgroup, carrying out cell cloning on the other subgroup; then clustering through a vaccination and an antibody to form the next generation of small population, judging whether the next generation of small population meets the conditions or not; if yes, selecting optimal individuals of the small populations; and selecting the optimal individuals from the set consisting of all optimal individuals to be used as a planning path. According to the invention, the diversity of the population is maintained by using an antibody clustering principle, the premature convergence of an algorithm is avoided, and the global optimization is facilitated. The established immune genetic algorithm is used for clustering and analyzing generated filial generations by adopting a self-regulating mechanism, and the diversity of the population is ensured.
Owner:SHENYANG INST OF AUTOMATION - CHINESE ACAD OF SCI

Engineering the pathway for succinate production

InactiveUS20120058530A1Increase overall carbon flowHigh expressionVectorsBacteriaMannheimiaPh control
This invention relates to the biocatalysts for the efficient production of succinic acid and/or other products from renewable biological feedstocks. The biocatalysts have a very high efficiency for the growth-coupled production of succinic acid and/or other products from carbohydrate feed stocks as a result of both genetic manipulations and metabolic evolution. More specifically, certain biocatalysts of the present invention produce succinic acid at high titers and yield in mineral salts media during simple pH-controlled, batch fermentation without the addition of any exogenous genetic material. The genetic manipulations of the present invention are concerned with the energy-conserving strategies coupled with the elimination of alternative routes for NADH oxidation other than the routes for succinic acid production. The biocatalysts contain glucose-repressed gluconeogenic phosphoenol pyruvate carboxykinase (pck) depressed by genetic modifications and a genetically-inactivated phosphotransferase system. In terms of succinic acid production efficiency, the biocatalysts of the present invention are functionally equivalent to succinate producing rumen bacteria such as Actinobacillus succinogens and Mannheimia succiniproducens with one difference that the biocatalysts are able to achieve this high level of succinic acid production in a minimal salt medium with carbohydrate source as opposed to the requirement for a rich media for succinic acid production by rumen bacteria.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Cascade hydropower station multi-object optimal scheduling mixed searching method coupling peak shaving and navigation demands

ActiveCN104036334AReasonable cascade operation planImprove search and solution efficiencyForecastingTemporal couplingCounter regulation
The invention relates to the field of comprehensive development and utilization and optimized scheduling of water resources, in particular to a cascade hydropower station multi-object optimal scheduling mixed searching method coupling peak shaving and navigation demands. The function of a navigation counter regulation power station can be fully performed, the peak shaving of a power grid and river channel navigation application requirements are taken into account, and a cascade operation plan which is practical and more reasonable in scheduling is obtained. According to the technical scheme, the minimum of the maximum value of the redundant loads of the power grid and the minimum of the variance of the counter regulation power station downstream river channel water level process are adopted as objects, in the NSGA-II searching process, for the complex constrains of the climbing upper limit, the output fluctuation control limit, the machine starting and shutting down minimum lasting time, the term end water level control and the like, time coupling constraint handling strategies, end water level correction strategies and improved genetic manipulation operators are put forward, so that the searching and solving efficiency of the method can be improved, a calculating result meeting engineering application request is obtained, and the method is suitable for being adopted and popularized in the scheduling operation of a cascade hydropower station with navigation requests.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products