Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

82 results about "Lattice thermal conductivity" patented technology

Lattice thermal conductivity strongly affects the applications of materials related to thermal functionality, such as thermal management, thermal barrier coatings and thermoelectrics. In order to understand lattice thermal conductivity more...

Nanophase doped bismuth telluride-based thermoelectric material and preparation method thereof

The invention discloses a nanophase doped bismuth telluride-based thermoelectric material and a preparation method thereof. The bismuth telluride-based thermoelectric material is characterized in taking the bismuth telluride-based thermoelectric material containing a tellurium element, a bismuth element and a doped chemical element, as a matrix. The doped nanophase is a one-dimensional nanophase,and the weight of the one-dimensional nanophase accounts for 0.01-5 percent of the weight of the matrix. Attapulgite or a zinc oxide nanowire or a single-wall carbon nanotube or a multi-wall carbon nanotube is preferable to the one-dimensional nanophase. Compared with the prior art, in the bismuth telluride-based thermoelectric material, the lattice heat conductivity within the whole temperature zone range is reduced, thereby a ZT value is greatly improved and the thermoelectric performance of the bismuth telluride-based thermoelectric material is improved. The preparation method is simple and easy to implement, and compared with other methods of balling milling or liquid phase and the like, impurities are not easy to introduce in the preparation method so that the one-dimensional nanophase is evenly staggered and distributed in the matrix and the mechanical property of the material is effectively improved.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Nanoparticle composite bismuth telluride-based thermoelectric material and preparation method thereof

The invention discloses a nanoparticle composite bismuth telluride-based thermoelectric material and a preparation method thereof. In the nanoparticle composite bismuth telluride-based thermoelectric material, a bismuth telluride thermoelectric material is used as a substrate, and nanoparticles are mixed in the substrate, wherein the nanoparticles are electrical-conduction oxide nanoparticles. Compared with the prior art, since the electrical-conduction oxide nanoparticles are used as a second phase and compounded with a bismuth telluride-based alloy substrate; on one hand, the electrical-conduction oxide nanoparticles can enhance the selective scattering to low-frequency phonons so that the crystal lattice heat conductivity of the bismuth telluride-based thermoelectric material can be effectively reduced, and on the other hand, the electrical-conduction oxide nanoparticles can improve the electrical conductivity of the material on the other hand, therefore, an integral regulation and control effect improves the thermoelectric figure of merit ZR of the bismuth telluride-based thermoelectric material so that the thermoelectric property of the bismuth telluride-based thermoelectric material is optimized.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

High-performance thermoelectric composite material and preparation method thereof

The invention relates to a high-performance thermoelectric composite material and a preparation method thereof, belonging to the field of thermoelectric materials. The composite material consists of two phases. A first phase is n-type Bi2Te3-Bi2Se3 or p-type Bi2Te3-Sb2Te3, and a second phase is nanometer powder of a metallic oxide. The nanometer powder of the metallic oxide accounts for 0.05-10% in terms of the total weight of the thermoelectric composite material. According to the preparation method provided by the invention, the n-type Bi2Te3-Bi2Se3 or p-type Bi2Te3-Sb2Te3 powder is ultrasonically mixed with the nanometer oxide, and discharge plasma sintering is carried out on the mixture to obtain a dense block material. Compared with the bismuth-telluride-based thermoelectric base material, under the condition that the electric conductivity of the thermoelectric base material is maintained to be unchanged basically in the invention, the high-performance thermoelectric composite material, provided by the invention, achieves the advantages of obviously reduced lattice heat conductivity and increased Seeback coefficient, and therefore the thermoelectric performance of the material can be greatly improved.
Owner:中科西卡思(苏州)科技发展有限公司

Argyrodite thermoelectric material and preparation method thereof

The invention relates to an argyrodite thermoelectric material, the chemical formula of which is Ag8Sn(1-x)NbxSe6, x=0-0.05. The preparation method of the argyrodite thermoelectric material is characterized by, with simple substances being raw materials, carrying out material blending according to stoichiometric ratio of the chemical formula; after vacuum packaging, melting reaction quenching and thermal treatment quenching, grinding ingots into powders; and carrying out vacuum high-temperature hot-pressure sintering, and after slow cooling, obtaining a block material, which is the argyrodite thermoelectric material. Compared with the prior art, the high-performance thermoelectric material, which is low in heat conduction and high in thermoelectric performance, is prepared, and the method for preparing the thermoelectric material, which is high in density, high in mechanical strength and high in thermoelectric performance, is explored; the thermoelectric material has very low lattice thermal conductivity (0.2-0.4 W/m.K) in a whole-temperature range; when the temperature is 900 K, thermoelectric peak of the thermoelectric material reaches 1.2; when the temperature is 300-850 K, the average thermoelectric figure of merit zTave of the thermoelectric material is infinity-0.8; and the argyrodite thermoelectric material is a potential thermoelectric material.
Owner:TONGJI UNIV

N-type antimony trimagnesium alloy thermoelectric material with high mobility and preparation method thereof

The invention relates to an N-type antimony trimagnesium alloy thermoelectric material with high mobility and a preparation method thereof. The chemical formula of the thermoelectric material is Mg<3.05>Sb<2-x-y>Bi<y-x>Te<x>, wherein x is more than 0 but less than or equal to 0.04, and y is more than 0 but less than or equal to 1.5. The thermoelectric material takes a high-pure element as a raw material, material is prepared according to a stiochiometric ratio in the chemical formula, the raw material is grinded to form powder after vacuum package by a tantalum pipe, high-temperature melting and annealing thermal treatment, and the thermoelectric material is obtained after vacuum hot-press sintering and slow cooling. Compared with the prior art, the tellurium doping is improved by solid solution of antimony trimagnesium, negative ion electrons are introduced, and simultaneous control of carrier concentration and lattice thermal conductivity is achieved; and meanwhile, the content of magnesium oxide in an N-type Mg3Sb2 alloy crystal boundary is reduced by tantalum package melting, so that higher mobility than that of traditional document is shown. The simple and controllable technology can be widely applied to various thermoelectric materials, particularly materials with a large amount of intrinsic defects, and a new method is provided for improving the thermoelectric performance.
Owner:TONGJI UNIV

Non-stoichiometric bismuth telluride-based thermoelectric material and preparation method thereof

The invention belongs to the technical field of energy materials, and particularly relates to a non-stoichiometric bismuth telluride-based thermoelectric material and a preparation method thereof. Thematerial disclosed by the invention has a chemical composition shown as the following general formula: BixSb2xTe3+y, and the preparation method comprises the following steps: firstly, weighing Bi simple substance powder, Sb simple substance particles and Te simple substance powder raw materials according to the chemical composition of the general formula, carrying out ball milling treatment to obtain powder, and carrying out cyclic discharge plasma sintering treatment on the obtained powder for 1-5 times to obtain a block sample. The bismuth telluride-based thermoelectric material prepared bythe method is good in crystallinity and compact in structure, and compared with a sample prepared by a traditional mechanical alloying and sintering combined method, the bismuth telluride-based thermoelectric material is obviously increased in grain size and introduces a large number of dislocations, so that the electrical property is improved, the lattice thermal conductivity is reduced, and thethermoelectric property is excellent. Meanwhile, the preparation method is simple and convenient to operate, short in period, free of high-temperature risk and low in energy consumption, and has a wide application prospect.
Owner:TSINGHUA UNIV

Sulfur-group lead-compound thermoelectric material and preparation method thereof

The invention relates to a sulfur-group lead-compound thermoelectric material and a preparation method thereof. The chemical formula of the sulfur-group lead-compound thermoelectric material is Pb(1-x)Sb(2x / 3)Se, wherein the x is larger than 0 and is less than 0.09. According to the preparation method, a high-purity simple substance is used as a raw material; batching is carried out based on a stoichiometric ratio in the chemical formula; after vacuum packaging, high-temperature melting, and annealing heat treatment are carried out, grinding is carried out to obtain powder; vacuum hot pressing sintering and slow cooling are carried out to obtain a sheet type block material that is a lead selenide material based on target components. A controllable preparation method of forming a dislocation structure by introducing a Pb positive ion vacancy structure is designed; and because a high-density transgranular dislocation structure is introduced into the material, intermediate-frequency phonons can be scattered effectively, so that the lattic thermal conductivity, less than 0.4W / m-K, of the material, can be reduced substantially. According to the prepared novel high-performance thermoelectric material based on Pb(1-x)Sb(2x / 3)Se, the zT value reaches 1.6 on the condition of 900K, wherein the zT value is a highest value of the existing PbSe system terminal. Therefore, the sulfur-group lead-compound thermoelectric material is a novel thermoelectric material with great large-scale application potential.
Owner:TONGJI UNIV

High-performance silver-tellurium compound thermoelectric semiconductor material and preparation method thereof

The invention relates to a high-performance silver-tellurium compound thermoelectric semiconductor material and a preparation method thereof. The chemical formula of the silver-tellurium compound thermoelectric semiconductor material is Ag5-xTe3, wherein x satisfies a relational expression that -0.04<=x<=0.14. According to the preparation of the silver-tellurium compound thermoelectric semiconductor material, high-purity simple substances are adopted as raw materials; the materials are selected according to a stoichiometric ratio in the above chemical formula; and the materials are subjected to vacuum encapsulation, high-temperature melting, annealing and heat treatment, and obtained substances are ground into powder, and the powder is subjected to vacuum hot-pressing and sintering, and slow cooling, so that a sheet-like block material is obtained, the sheet-like block material is a target product. Compared with the prior art, the thermoelectric semiconductor material of the inventionproduced by using the preparation method of the invention has the advantages of extremely low thermal conductivity and high thermoelectric performance; the lattice thermal conductivity of the thermoelectric material is as low as 0.18 to 0.25W/m.K in a full temperature range; the thermoelectric figure of merit of the thermoelectric material reaches 1.0 when temperature reaches 650K; and the thermoelectric material has a great potential. With the invention adopted, a preparation process for obtaining a high-quality polycrystalline sample is explored.
Owner:TONGJI UNIV

Method for preparing elemental tellurium based composite pyroelectric material

The invention relates to a method for preparing an elemental tellurium based composite pyroelectric material and belongs to the field of pyroelectric materials. The pyroelectric material is characterized by having a chemical formula of Te1-x(Sb2Se3)x, wherein x is not smaller than 0 and not greater than 0.2. The preparation method disclosed by the invention comprises the following steps: weighingvarious raw material ingredients according to a mole fraction proportioning ratio of the chemical formula, and encapsulating Te cakes, Sb powder and Se powder into a carbon-plated quartz tube throughvacuum encapsulation; then, smelting the quartz tube in a vertical tube type furnace; then, carrying out annealing treatment; and finally, grinding an obtained cast ingot into fine powder, then, carrying out spark plasma sintering, so as to obtain dense mass which has very low thermal conductivity and relatively high pyroelectric properties, wherein the pyroelectric Q-value reaches 0.95. Accordingto the method, the pyroelectric properties of the elemental tellurium based composite pyroelectric material are improved through a smelting process, an annealing process and a spark plasma sinteringprocess. Compared with the prior art, the method has the advantages that through introducing an antimony selenide component, the cooperated optimization of carrier concentration and lattice thermal conductivity is achieved, and the process flow is simple and controllable and is low in cost.
Owner:TAIYUAN UNIV OF TECH

Method for preparing (Bi0.8Sb0.2)2Te3 nano thermoelectric material

The invention discloses a method for preparing a (Bi0.8Sb0.2)2Te3 nano thermoelectric material. The method comprises the following steps of (1) mixing a Bi2Te3 powder material and a Sb2Te3 powder material, and performing mechanical alloying treatment, thereby obtaining a ball-milling material; (2) taking a small part of ball-milling material, putting the ball-milling material into an alumina burning boat of a vacuum atmosphere furnace, filling mixed gas of argon and hydrogen, raising the temperature for performing vapor deposition, and collecting a powder material deposited on an alumina plate, thereby obtaining a vapor deposition material; (3) mixing the ball-milling material and the vapor deposition material according to a mass ratio of 5:1, and performing high-frequency heating and rapid hot press molding, thereby obtaining the (Bi0.8Sb0.2)2Te3 nano thermoelectric material. According to the preparation method, the electronic state density nearby a Fermi level is improved and controlled, and a Seebeck coefficient of the thermoelectric material is improved. Moreover, with nano-scale micro-defects, a scattering effect on phonons is enhanced, the lattice thermal conductivity of the thermoelectric material is reduced, and the thermoelectric performance of the material is greatly improved.
Owner:HENAN UNIV OF URBAN CONSTR

Novel germanium telluride based thermo-electric material with high thermo-electric performance and preparation method thereof

The invention relates to a novel germanium telluride based thermo-electric material with high thermo-electric performance and a preparation method thereof. The chemical expression of the novel germanium telluride based thermo-electric material is (Ge<1-x>Cu<2x>Te)<1-y>(PbSe)<y>, wherein x is equal to 0.02, and y is greater than or equal to 0 and less than or equal to 0.25. The preparation method comprises the following steps: taking a metal simple substance as a raw material, proportioning according to a stoichiometric ratio, carrying out vacuum packaging, high-temperature melting, annealing heat treatment and quenching to obtain a cast ingot, grinding the cast ingot into powder, and carrying out vacuum hot pressing to obtain a flaky material, namely the target component: the novel germanium telluride based thermo-electric material. Compared with the prior art, the thermo-electric material provided by the invention creates a new record of zT peak value and average zT (the peak value zT reaches 2.5 at 600-800K, and the average zT of the working temperature is greater than 1.5), and is a material with optimal thermo-electric performance in GeTe at present, which is higher than other known p-type thermo-electric materials; through defect regulation and control in GeTe, the optimization of carrier concentration and the reduction of lattice thermal conductivity are realized, and the high thermo-electric performance with record-ability is obtained.
Owner:TONGJI UNIV

Method for improving multi-value storage characteristic of In2Se3 phase change material

InactiveCN111785831AImprove resistivity contrastStable and reliable multi-value storageElectrical apparatusDigital storageOctahedronChemical physics
The invention discloses a method for improving the multi-value storage characteristic of an In2Se3 phase change material. The method comprises the following steps: constructing crystal models of an alpha phase and a beta phase of In2Se3; respectively replacing tetrahedral In atoms and octahedral In atoms in the alpha phase with Sc in proportion to form an alpha-phase tetrahedral doping system model and an octahedral doping system model; replacing the octahedral In atoms in the beta phase with Sc in proportion to form a beta-phase octahedral doping system model; establishing models of elementalIn and elemental Sc; optimizing the model; calculating the doping formation energy of the alpha phase and the beta phase; calculating the total energy, the state density, the energy band structure and the elastic constant of the optimization model; calculating the electrical conductivity and the electronic thermal conductivity; calculating the relationship between the lattice thermal conductivityand the temperature; and comparing the thermal conductivity and the electrical conductivity before and after doping to obtain the phase change material with better performance. Metal elements meetinga certain condition are doped into the metal oxide, so the storage performance of the metal oxide can be improved.
Owner:WUHAN UNIV OF TECH

High-performance PbTe-based N-type thermoelectric material and preparation method thereof

The invention relates to a high-performance PbTe-based N-type thermoelectric material and preparation thereof. The chemical formula of the thermoelectric material is CuxPbTe0.75Se0.25, wherein x is greater than 0 and less than or equal to 0.75%. Compared with the prior art, by using heterovalent interstitial copper atom doping, electrons can be released at interstitial positions after copper atomsenter crystal lattices, and the carrier concentration is adjusted, so that the material shows the properties of an N-type semiconductor. Due to the fact that the added interstitial copper atoms havethe solubility which is continuously increased along with the temperature in a PbTe0.75Se0.25 material system, the carrier concentration which is increased along with the temperature rise can be obtained in the temperature rise process, dynamic optimization of the carrier concentration is achieved, and the electrical transport performance of the material is enhanced. Besides, high-density intragranular dislocations can be introduced into the material due to aggregation of the interstitial copper atoms, and remarkable lattice strain can be introduced into the material due to the dislocation defects, so that the lattice thermal conductivity of the material is greatly reduced, and the thermal performance of the material is greatly optimized.
Owner:TONGJI UNIV

A kind of preparation method of n-type bismuth telluride-based thermoelectric material

The invention discloses a preparation method of an N-type bismuth telluride-based thermoelectric material. Firstly, the corresponding raw materials are weighed according to the stoichiometric ratio of the N-type bismuth telluride-based crystal material, placed in a quartz tube for vacuum packaging, and shaken at high temperature. Melting, using the zone melting method to prepare N-type bismuth telluride-based crystal materials; using N-type bismuth telluride-based crystal materials as a reaction matrix, using I 2 The molecule is used as an insertion compound, and the reaction matrix and the insertion compound are placed at both ends of the quartz tube; the area where the reaction matrix and the insertion compound are placed is simultaneously heated to a certain temperature and kept warm to realize the I 2 Molecular adsorption; and then the two areas were lowered to room temperature by means of zonal cooling to obtain I 2 Molecularly embedded N-type bismuth telluride-based thermoelectric materials. This method not only ensures the orientation and electrical properties of N-type Bismuth Telluride, but also reduces the lattice thermal conductivity, thereby realizing the coordinated regulation of the electrical and thermal transport properties of N-type Bismuth Telluride-based thermoelectric materials and the adjustment of the ZT value. improve.
Owner:BEIJING INSTITUTE OF PETROCHEMICAL TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products