Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

90results about How to "Lower lattice thermal conductivity" patented technology

Preparation method of bismuth telluride based bulk nano crystalline thermoelectric material

The invention relates to a bismuth telluride based bulk nano crystalline thermoelectric material and preparation method thereof. The technical scheme includes that: firstly simple substance powder with mass percent more than 99.99% is taken as raw material, burdening is carried out according to the chemical formula (SbxBi1-x)2Te3 or Bi2(SeyTe1-y)3, wherein x is more than or equal to 0.75 and less than or equal to 0.85, y is more than or equal to 0.04 and less than or equal to 0.06, mixing to be uniform is carried out, and then ball milling is carried out by a ball mill, thus obtaining bismuth telluride base alloy nano powder; secondly, the bismuth telluride base alloy obtained in the first step is loaded into a graphite mould or ceramic mould to be sintered in a micro wave irradiation pressure sintering device; temperature rises to 300-550 DEG C by heating under the condition that the pressure applied to the powder is 10-40MPa, and then heat preservation is carried out for 10-60min under the condition that the pressure applied to the powder is 30-60MPa, thus obtaining the bismuth telluride based bulk nano crystalline thermoelectric material. The invention has the characteristics of less investment, low production cost, simple technology and short period; and the obtained bismuth telluride based bulk nano crystalline thermoelectric material has high performance.
Owner:WUHAN UNIV OF SCI & TECH

Nanophase doped bismuth telluride-based thermoelectric material and preparation method thereof

The invention discloses a nanophase doped bismuth telluride-based thermoelectric material and a preparation method thereof. The bismuth telluride-based thermoelectric material is characterized in taking the bismuth telluride-based thermoelectric material containing a tellurium element, a bismuth element and a doped chemical element, as a matrix. The doped nanophase is a one-dimensional nanophase,and the weight of the one-dimensional nanophase accounts for 0.01-5 percent of the weight of the matrix. Attapulgite or a zinc oxide nanowire or a single-wall carbon nanotube or a multi-wall carbon nanotube is preferable to the one-dimensional nanophase. Compared with the prior art, in the bismuth telluride-based thermoelectric material, the lattice heat conductivity within the whole temperature zone range is reduced, thereby a ZT value is greatly improved and the thermoelectric performance of the bismuth telluride-based thermoelectric material is improved. The preparation method is simple and easy to implement, and compared with other methods of balling milling or liquid phase and the like, impurities are not easy to introduce in the preparation method so that the one-dimensional nanophase is evenly staggered and distributed in the matrix and the mechanical property of the material is effectively improved.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

High-performance thermoelectric composite material and preparation method thereof

The invention relates to a high-performance thermoelectric composite material and a preparation method thereof, belonging to the field of thermoelectric materials. The composite material consists of two phases. A first phase is n-type Bi2Te3-Bi2Se3 or p-type Bi2Te3-Sb2Te3, and a second phase is nanometer powder of a metallic oxide. The nanometer powder of the metallic oxide accounts for 0.05-10% in terms of the total weight of the thermoelectric composite material. According to the preparation method provided by the invention, the n-type Bi2Te3-Bi2Se3 or p-type Bi2Te3-Sb2Te3 powder is ultrasonically mixed with the nanometer oxide, and discharge plasma sintering is carried out on the mixture to obtain a dense block material. Compared with the bismuth-telluride-based thermoelectric base material, under the condition that the electric conductivity of the thermoelectric base material is maintained to be unchanged basically in the invention, the high-performance thermoelectric composite material, provided by the invention, achieves the advantages of obviously reduced lattice heat conductivity and increased Seeback coefficient, and therefore the thermoelectric performance of the material can be greatly improved.
Owner:中科西卡思(苏州)科技发展有限公司

Argyrodite thermoelectric material and preparation method thereof

The invention relates to an argyrodite thermoelectric material, the chemical formula of which is Ag8Sn(1-x)NbxSe6, x=0-0.05. The preparation method of the argyrodite thermoelectric material is characterized by, with simple substances being raw materials, carrying out material blending according to stoichiometric ratio of the chemical formula; after vacuum packaging, melting reaction quenching and thermal treatment quenching, grinding ingots into powders; and carrying out vacuum high-temperature hot-pressure sintering, and after slow cooling, obtaining a block material, which is the argyrodite thermoelectric material. Compared with the prior art, the high-performance thermoelectric material, which is low in heat conduction and high in thermoelectric performance, is prepared, and the method for preparing the thermoelectric material, which is high in density, high in mechanical strength and high in thermoelectric performance, is explored; the thermoelectric material has very low lattice thermal conductivity (0.2-0.4 W/m.K) in a whole-temperature range; when the temperature is 900 K, thermoelectric peak of the thermoelectric material reaches 1.2; when the temperature is 300-850 K, the average thermoelectric figure of merit zTave of the thermoelectric material is infinity-0.8; and the argyrodite thermoelectric material is a potential thermoelectric material.
Owner:TONGJI UNIV

N-type antimony trimagnesium alloy thermoelectric material with high mobility and preparation method thereof

The invention relates to an N-type antimony trimagnesium alloy thermoelectric material with high mobility and a preparation method thereof. The chemical formula of the thermoelectric material is Mg<3.05>Sb<2-x-y>Bi<y-x>Te<x>, wherein x is more than 0 but less than or equal to 0.04, and y is more than 0 but less than or equal to 1.5. The thermoelectric material takes a high-pure element as a raw material, material is prepared according to a stiochiometric ratio in the chemical formula, the raw material is grinded to form powder after vacuum package by a tantalum pipe, high-temperature melting and annealing thermal treatment, and the thermoelectric material is obtained after vacuum hot-press sintering and slow cooling. Compared with the prior art, the tellurium doping is improved by solid solution of antimony trimagnesium, negative ion electrons are introduced, and simultaneous control of carrier concentration and lattice thermal conductivity is achieved; and meanwhile, the content of magnesium oxide in an N-type Mg3Sb2 alloy crystal boundary is reduced by tantalum package melting, so that higher mobility than that of traditional document is shown. The simple and controllable technology can be widely applied to various thermoelectric materials, particularly materials with a large amount of intrinsic defects, and a new method is provided for improving the thermoelectric performance.
Owner:TONGJI UNIV

Shining thermal barrier coating system of rare earth niobate based on defective fluorite structure and preparation method of shining thermal barrier coating system

The invention provides a shining thermal barrier coating system of rare earth niobate based on a defective fluorite structure and a preparation method of the shining thermal barrier coating system. The preparation method comprises the following steps that Ln2O3 powder and Nb2O3 powder are calcined for one hour at the temperature of 1000 DEG C and mixed at the stoichiometric ratio, absolute ethyl alcohol serves as mixing graft, zirconia is used as a ball-milling medium ball-milling mixed material, and after rotary evaporation and drying, presintered powder is obtained; dry pressing and forming are conducted to obtain a blank; the blank is subjected to pressureless sintering in air and then uniformly mixed with Ln3NbO3, and high-fluidity powder is formed through spray granulation and dry treatment; and a layer of metal bonding layer McrAlY alloy is deposited on the surface of a cobalt-based or nickel-based metal substrate, the high-fluidity powder is deposited on the surface of a metal bonding layer to form a ceramic layer through an ion spray technology, an electron beam physical vapor deposition technology or other spray technologies, and the thermal barrier coating system is formed. The shining thermal barrier coating system of the rare earth niobate is integrated in structure and function, and low in heat conductivity.
Owner:乐延伟

Alloy thermoelectric semiconductor material and fabrication method thereof

The invention relates to an alloy thermoelectric semiconductor material and a fabrication method thereof. The chemical formula of the alloy thermoelectric semiconductor material is (GeTe)<1-x>(PbSe)<x>, and x is more than 0 but less than0.4. During fabrication, simple elements Ge, Te, Pb and Se are sequentially loaded in a quartz ampoule from small to large and are packaged after vacuumizing, andthe steps of melting quenching, annealing quenching and hot-press sintering are sequentially performed to finally fabricate the alloy thermoelectric semiconductor material. Compared with the prior art, substitution of the elements (Ge/Pb and Te/Se) in the main group are performed on positions of a negative ion and a positive ion in a GeTe material, the large-range control of carrier concentrationis achieved, the carrier concentration level of the GeTe material is optimized, meanwhile, the thermoelectric merit figure of the material is also increased by point defect introduced by element substitution, the lattice thermal conduction of the material is substantially reduced as well as the carrier concentration is regulated, and a new idea is provided for improvement of thermoelectric performance of a GeTe-based thermoelectric material and same-type material.
Owner:TONGJI UNIV

Non-stoichiometric bismuth telluride-based thermoelectric material and preparation method thereof

The invention belongs to the technical field of energy materials, and particularly relates to a non-stoichiometric bismuth telluride-based thermoelectric material and a preparation method thereof. Thematerial disclosed by the invention has a chemical composition shown as the following general formula: BixSb2xTe3+y, and the preparation method comprises the following steps: firstly, weighing Bi simple substance powder, Sb simple substance particles and Te simple substance powder raw materials according to the chemical composition of the general formula, carrying out ball milling treatment to obtain powder, and carrying out cyclic discharge plasma sintering treatment on the obtained powder for 1-5 times to obtain a block sample. The bismuth telluride-based thermoelectric material prepared bythe method is good in crystallinity and compact in structure, and compared with a sample prepared by a traditional mechanical alloying and sintering combined method, the bismuth telluride-based thermoelectric material is obviously increased in grain size and introduces a large number of dislocations, so that the electrical property is improved, the lattice thermal conductivity is reduced, and thethermoelectric property is excellent. Meanwhile, the preparation method is simple and convenient to operate, short in period, free of high-temperature risk and low in energy consumption, and has a wide application prospect.
Owner:TSINGHUA UNIV

Method for preparing elemental tellurium based composite pyroelectric material

The invention relates to a method for preparing an elemental tellurium based composite pyroelectric material and belongs to the field of pyroelectric materials. The pyroelectric material is characterized by having a chemical formula of Te1-x(Sb2Se3)x, wherein x is not smaller than 0 and not greater than 0.2. The preparation method disclosed by the invention comprises the following steps: weighingvarious raw material ingredients according to a mole fraction proportioning ratio of the chemical formula, and encapsulating Te cakes, Sb powder and Se powder into a carbon-plated quartz tube throughvacuum encapsulation; then, smelting the quartz tube in a vertical tube type furnace; then, carrying out annealing treatment; and finally, grinding an obtained cast ingot into fine powder, then, carrying out spark plasma sintering, so as to obtain dense mass which has very low thermal conductivity and relatively high pyroelectric properties, wherein the pyroelectric Q-value reaches 0.95. Accordingto the method, the pyroelectric properties of the elemental tellurium based composite pyroelectric material are improved through a smelting process, an annealing process and a spark plasma sinteringprocess. Compared with the prior art, the method has the advantages that through introducing an antimony selenide component, the cooperated optimization of carrier concentration and lattice thermal conductivity is achieved, and the process flow is simple and controllable and is low in cost.
Owner:TAIYUAN UNIV OF TECH

Environment-friendly sulfur group stannide thermoelectric material and preparing method thereof

The invention relates to a high-performance environment-friendly sulfur group stannide thermoelectric material and a preparing method thereof. The chemical general formula of the thermoelectric material is Sn1.03-yMgyTe(Cu2Te)x(0<x<=0.05, 0<y<=0.12). According to the preparing method, a metal elementary substance with purity larger than 99% is used as a raw material, material matching is carried out according to the stoichiometric ratio of Sn1.03-yMgyTe(Cu2Te)x, after vacuum packaging, high-temperature melting and annealing heat treatment are carried out, the material is ground into powder, and after vacuum hot-press sintering and slow cooling are carried out, a sheet material is obtained and is the novel sulfur group stannide thermoelectric material of the target component. According to the design, in the SnTe material, collaborative optimization of an electrical transport property and a hot transport property is achieved to improve thermoelectric performance of the material. Compared with the prior art, the invention develops a novel high-performance environment-friendly Sn1.03-yMgyTe(Cu2Te)x thermoelectric material, the zT value reaches 1.4 at 900 K, and the material is an environment-friendly high-performance thermoelectric material with potentials for replacing a traditional p-type lead telluride material.
Owner:TONGJI UNIV

Preparation method of composite material based on metal organic framework and carbon nanotubes, and preparation method of device

The invention discloses a preparation method of a composite material based on a metal organic framework and carbon nanotubes, and a preparation method of a device. The preparation method comprises thefollowing steps: firstly, preparing a P-type Ni<3>(HITP)<2>/CNT composite material and an N-type Ni<3>(HITP)<2>/CNT composite material; then respectively tabletting the P-type Ni<3>(HITP)<2>/CNT composite material and the Ni<3>(HITP)<2>/CNT composite material by using a square tabletting mold at a pressure of 10-30 MPa for 5-30 minutes so as to obtain a P-type composite block material and an N-type composite block material, then assembling the P-type composite block material and the N-type composite block material; and connecting connecting parts by using a conductive silver adhesive or a copper wire so as to obtain the device. The N-type stable MOF/CNT composite material with the highest performance is successfully prepared and applied to device circuits, and the porous composite material with high conductivity and low thermal conductivity has potential application value in the fields of catalytic materials, gas adsorption materials, thermal insulation materials and high-performancethermoelectric materials.
Owner:XI AN JIAOTONG UNIV

Novel low-thermal-conductivity argyrodite thermoelectric material and preparation method thereof

The invention relates to a novel low-thermal-conductivity argyrodite thermoelectric material and a preparation method thereof. A chemical formula of the thermoelectric material is Ag9Ga1-XMx(Se1-YSy)6, wherein, M is one selected from Cr, Cd, Zn or Ge, 0</=x</=0.06, and 0</=y</=0.10; during preparation, a simple substance with the purity of more than 99.99% is used as a raw material, and ingredients are weighed according to the stoichiometric ratio and placed in a sealed quartz tube for vacuum packaging; a muffle furnace is used for heating, so that the high-purity raw material is subjected to a melt reaction at a high temperature and then to rapid quench cooling, to obtain a first ingot; the first ingot is vacuum packaged in the quartz tube, and is subjected to high temperature annealing treatment and then to rapid quench cooling, to obtain a second ingot; the second ingot is grinded into powder which is placed in a graphite mold, hot pressed sintering is carried out throguh induction heating and temperature rise in a vacuum atmosphere, then slow cooling is performed, and completing the preparation. Compared with the prior art, the thermoelectric material of the invention has the advantages of stable mechanical property, very low lattice thermal conductivity (0.2W/m K), and good application prospect.
Owner:TONGJI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products