Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2119 results about "Thermal transmittance" patented technology

Thermal transmittance is the rate of transfer of heat through matter. The thermal transmittance of a material (such as insulation or concrete) or an assembly (such as a wall or window) is expressed as a U-value.

Diamond composite heat spreaders having low thermal mismatch stress and associated methods

A diamond composite heat spreader having a low thermal mismatch stress can improve reliability and cost of diamond-based heat spreaders. A diamond composite heat spreader can have a thermally conductive base and a diamond film in thermal contact with the thermally conductive base. The diamond film and the thermally conductive base can have a residual thermal mismatch stress which is less than about 75% of a residual thermal mismatch stress which would result from forming the diamond film on the thermally conductive base using a high temperature deposition process at 700° C. The diamond film can be formed on the thermally conductive base using a low temperature vapor deposition process performed at a temperature from about 10° C to less than 700° C, and typically lower than about 450° C. The diamond films further have high thermal diffusivity and thermal conductivity which allow for dramatic improvements in heat transfer away from a heat source without the need for growing a thick diamond film. By providing a low temperature deposition of the diamond film, residual thermal mismatch stress can be significantly reduced, while allowing for use of well known heat spreaders such as standard copper heat spreaders and associated technologies.
Owner:SUNG CHIEN MIN

Thermoelectric devices and methods for making the same

Thermoelectric devices having enhanced thermal characteristics are fabricated using multilayer ceramic (MLC) technology methods. Aluminum nitride faceplates with embedded electrical connections provide the electrical series configuration for alternating dissimilar semiconducting materials. Embedded electrical connections are formed by vias and lines in the faceplate. Methods are employed for forming tunnels through lamination and etching. A portion of the dissimilar materials are then melted within the tunnels to form a bond. Thermal conductivity of the faceplate is enhanced by adding electrically isolated vias to one surface, filled with high thermal conductivity metal paste. A low thermal conductivity material is also introduced between the two high thermal conductivity material faceplates. Alternating semiconducting materials are introduced within the varying thermal conductivity layers by punching vias within greensheets of predetermined thermal conductivity and filling with n-type and p-type paste. Alternating semiconducting materials may also be patterned in linear or radial fanout patterns through screening techniques and lamination of wire structures. A liquid channel within the faceplate is used to enhance thermal energy transfer. Thermoelectric devices are physically incorporated within the IC package using MLC technology.
Owner:IBM CORP

Thermoelectric devices and methods for making the same

Thermoelectric devices having enhanced thermal characteristics are fabricated using multilayer ceramic (MLC) technology methods. Aluminum nitride faceplates with embedded electrical connections provide the electrical series configuration for alternating dissimilar semiconducting materials. Embedded electrical connections are formed by vias and lines in the faceplate. Methods for forming tunnels through lamination and etching are employed. A portion of the dissimilar materials are then melted within the tunnels to form a bond. Thermal conductivity of the faceplate is enhanced by adding electrically isolated vias to one surface, filled with high thermal conductivity metal paste. A low thermal conductivity material is also introduced between the two high thermal conductivity material faceplates.Alternating semiconducting materials are introduced within the varying thermal conductivity layers by punching vias within greensheets of predetermined thermal conductivity and filling with n-type and p-type paste. Alternating semiconducting materials may also be patterned in linear or radial fanout patterns through screening techniques and lamination of wire structures. A liquid channel within the faceplate is used to enhance thermal energy transfer.Thermoelectric devices are physically incorporated within the IC package using MLC technology.
Owner:INT BUSINESS MASCH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products