Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

33 results about "GeSbTe" patented technology

GeSbTe (germanium-antimony-tellurium or GST) is a phase-change material from the group of chalcogenide glasses used in rewritable optical discs and phase-change memory applications. Its recrystallization time is 20 nanoseconds, allowing bitrates of up to 35 Mbit/s to be written and direct overwrite capability up to 10⁶ cycles. It is suitable for land-groove recording formats. It is often used in rewritable DVDs. New phase-change memories are possible using n-doped GeSbTe semiconductor. The melting point of the alloy is about 600 °C (900 K) and the crystallization temperature is between 100 and 150 °C.

Ge/Sb-type superlattice phase-change thin film material for high-speed and low-power phase-change memory and preparation method thereof

The invention discloses a Ge / Sb superlattice phase change thin film material for high-speed and low power consumption phase change memory, which is characterized in that: the Ge / Sb superlattice phase change thin film material is a multi-layer film structure, composed of The Ge layer and the Sb layer are alternately deposited and composited, and one layer of Ge layer and one layer of Sb layer are used as an alternating cycle, and the Ge layer of the latter alternate cycle is deposited on the Sb layer of the previous alternate cycle. The Ge / Sb-like superlattice phase-change thin film material of the present invention utilizes the clamping effect of the multilayer interface in the superlattice-like structure to reduce the grain size, thereby shortening the crystallization time, inhibiting crystallization, and improving the thermal stability of the material while speeding up the phase transition. The RESET voltage of the Ge / Sb class superlattice phase change film material of the present invention is lower than the RESET voltage of the Ge2Sb2Te5 film under the same voltage pulse more than 30%, illustrating that the GeSb class superlattice phase change film material of the present invention has lower power consumption.
Owner:JIANGSU UNIV OF TECH

Silicon-doped bismuth telluride-based memory material for phase-change memory and preparation method of silicon-doped bismuth telluride-based memory material

The invention provides a silicon-doped bismuth telluride-based memory material for a phase-change memory and a preparation method of the silicon-doped bismuth telluride-based memory material. A chemical formula of the silicon-doped bismuth telluride-based material is BixTeySi100 minus (x plus y), wherein the x and the y satisfy the following conditions that the x is more than 0 and is less than or equal to 40, the y is more than 0 and is less than or equal to 60, and the x plus the y is more than or equal to 90 and is less than 100. Under the situation that an electrical impulse signal is applied, the silicon-doped bismuth telluride-based material has the reversible characteristic between a high-impedance state and a low-impedance state and can be used for the phase-change memory. Compared with the traditional GeTe, SiSbTe, GeSbTe and other phase-change thin-film materials for the phase-change memory, the silicon-doped bismuth telluride-based material has simple component, quicker phase-change speed, lower energy required for phase change and good compatibility with a complementary metal oxide semiconductor (CMOS) device manufacturing process, and is an excellent new memory material for the phase-change memory.
Owner:HUAZHONG UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products