Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2011results about How to "Adjustable thickness" patented technology

Microcapsule of organic phase change energy storage material and preparation method thereof

ActiveCN101555401AHas infrared reflective propertiesHas infrared absorption propertiesEnergy storageHeat-exchange elementsChemistryIn situ polymerization
The invention discloses a microcapsule of an organic phase change energy storage material and a preparation method thereof. The microcapsule of an organic phase change energy storage material comprises a core and a nucleocapsid, wherein the material of the core comprises the organic phase change energy storage material; the nucleocapsid at least comprises an inner layer and an outer layer, the inner layer is packaged by any one of an in situ polymerization method, an interface polymerization method, a reaction phase separating method, a double agglomeration method and a sol-gal process, and the outer layer is packaged by any one of an in situ polymerization method, a reaction phase separating method, a sol-gal process and a double agglomeration method. The microcapsule has adjustable size, nucleocapsid composition and shell thickness, favorable flexibility, mechanical strength, penetrability resistance and dispersibility and can be widely applied to the fields of energy sources, materials, aero-space, textile, electric power, medical apparatus, architecture, and the like, such as solar utilization, industrial afterheat and waste heat recovery, architecture energy storage, dress with constant temperature, air conditioners for cool and heat accumulation, constant temperature of electric appliances, and the like.
Owner:BEIJING NEW BUILDING MATERIAL

A kind of preparation method of long fiber reinforced hollow fiber membrane

The invention discloses a method for preparing a long fiber reinforced hollow fibrous membrane. The method can be implemented in two ways: (1) adopting a spinning nozzle having a long fiber channel; introducing a long fiber into the long fiber channel; guiding the long fiber into a membrane casting solution and fiber compounding area via a fiber positioning plate; co-extruding the compounded long fiber and membrane casting solution; and forming a membrane under the action of core solution and external coagulating bath or cooling bath, and (2) adopting a spinning nozzle for co-extruding the long fiber and the membrane casting solution; guiding the long fiber out of a liquid material jar; guiding the long fiber to pass by a membrane casting solution pipeline and introducing the long fiber into the spinning nozzle from a membrane casting solution inlet of the spinning nozzle; co-extruding the long fiber and membrane casting solution after positioning the long fiber through the fiber positioning plate; forming the membrane under the action of core solution and external coagulating bath; and finally winding the membrane through a guide wheel and a winding machine. The long fiber reinforced compound membrane prepared by using the method has the advantages that the mechanical strength of the hollow fibrous membrane is increased by 3-5 times according to the quantity and variety of the long fiber in the hollow fibrous membrane, and the water flux, the rejection coefficient and the hydrophilicity are all obviously improved.
Owner:ZHEJIANG UNIV

Hollow porous spherical platinum-silver alloy nano-material and preparation method for same

The invention relates to a hollow porous spherical platinum-silver alloy nano-material and a preparation method for the same. The nano-material is of a spherical structure with a porous shell and an internal cavity, the diameter of the spherical structure ranges from 5 nanometers to 500 nanometers, the inner diameter of the cavity ranges from 1 nanometer to 400 nanometers, the thickness of a porewall ranges from 1 nanometer to 50 nanometers, and the pore diameter ranges from 1 nanometer to 20 nanometers. Polyatomic alcohol, inorganic silver salt precursor, inorganic platinum salt precursor and polyvinylpyrrolidone are used as reaction raw materials, inorganic salt containing halogen ions and copper-containing inorganic salt are used as auxiliaries, and the hollow porous spherical platinum-silver alloy nano-material is synthesized by means of reaction. The preparation method is simple in process, convenient in operation, fine in repeatability and low in cost, and the obtained hollow porous spherical platinum-silver alloy nano-material can be used for the fields of chemical and electrochemical catalysis, chemical sensors, biomolecular sensors, information storage, fuel cells, solarcells and the like. Particularly, the hollow porous structure of the nano-material can be effectively applied to slow drug release and target-oriented drug delivery treatment.
Owner:SHANDONG UNIV

Method for effectively preparing high-orientation and high-compactness two-dimensional material thin film

The invention relates to the field of preparation and application of two-dimensional materials, in particular to a method for effectively preparing a high-orientation and high-compactness two-dimensional material thin film. The method comprises the following steps: taking a circular tube with a smooth inner surface as a casting die; pouring a solution which contains a two-dimensional material intothe die when the die rotates in the peripheral direction at high speed; uniformly coating the inner surface of the die with the solution by using centrifugal force; forming shear force which drives the two-dimensional material to be regularly arranged layer by layer in an oriented manner in the peripheral direction in the solution in a centrifugal rotating process; and meanwhile, driving the two-dimensional material to be accumulated at high compactness by the centrifugal force so as to obtain the two-dimensional material thin film with high orientation and high compactness. The method is suitable for preparing various two-dimensional materials such as graphene, and composite thin films and laminated heterostructure thin films of the two-dimensional materials; electric property, heat property, mechanical property and the like of the thin film are greatly improved; and the method is used in the field of high-performance electric conduction / heat-conduction thin films, heat management materials, high-strength thin films, electronic / optoelectronic devices, compact energy storage, gas / ion separating films, proton transmitting films and the like.
Owner:深圳烯材科技有限公司

Method for preparing Fe-based WC-Ni gradient coating by using plasma cladding method

The invention discloses a method for preparing an Fe-based WC-Ni gradient coating by using a plasma cladding method, comprising the steps of: designing the number of layers of the gradient coating and the proportion of ceram A at each layer; supplying the A and metal powder B by a binocular; mixing the powder A and B through a three-way device and then putting the mixture into a coaxial powder feeding cladding gun which is controlled by a numerical control device; controlling the transverse size of the coating by controlling the walking speed, the swinging speed and the swinging amplitude as well as obtaining required coating thickness by controlling the powder feeding amount and the plasma arc power; cleaning the surface after the coating is solidified; and repeating the second to fifth steps to complete the preparation of the coating. In the invention, the used equipment is simple; the investment is low; the length, the width and the thickness of the gradient coating are adjustable; the components in the coating are uniform; the gradient coating can be prepared at local positions of workpieces; and metallurgic combination can be achieved between the coating and matrixes or between coatings with high interface combination strength.
Owner:HUBEI UNIV OF AUTOMOTIVE TECH

Method of preparing phase-change energy-accumulation material microemulsion

InactiveCN101508887AHigh viscosityLarge apparent specific heat capacityHeat-exchange elementsFreeze thawingSurface-active agents
The invention relates to a method for preparing phase change energy storage material microemulsion, comprising the steps: first, 10 parts by weight of organic phase change energy storage material can be prepared; 1-4 parts by weight of surface active agent, 1-3 parts by weight of cosurfactant, 0.3-1.5 parts by weight of inorganic salt and 10-100 parts by weight of de-ionized water or distilled water are added into the organic phase change energy storage material; after that, the mixed solution is evenly stirred and mixed at a certain temperature and then stands still; finally, the microemulsion is obtained until bubbles are completely removed; wherein, the surface active agent is compound of surface active agent A and surface active agent B, the HLB values of which are respectively 1-10 and 11-20; the weight ratio between the surface active agent A and the surface active agent B is 1:1.5-4.5, and the HLB value is 8-18 after being compounded. The obtained microemulsion is a stable system of thermodynamics, has transparent appearance, and does not have the phenomenon of phase splitting and emulsion breaking caused by a plurality of times of phase transition process due to the actions such as a plurality of times of freeze thawing, centrifugal separation and the like, thereby fundamentally overcoming the defect of poor stability of conventional emulsion and being long in service life.
Owner:SHENZHEN GRADUATE SCHOOL TSINGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products