Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

164 results about "Percolation threshold" patented technology

The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p₁, p₂, ..., such that infinite connectivity (percolation) first occurs.

High-sensitivity pressure conduction sensor for localized pressures and stresses

A high-sensitivity pressure conduction sensor is presented. The present invention includes a pair of locally resilient conductive layers and a locally resilient pressure conduction composite disposed between and contacting both conductive layers. Alternate embodiments include at least three locally resilient conductive layers and at least two locally resilient pressure conduction composites, each having a critical percolation threshold. Each composite is disposed between and contacting two conductive layers in a multi-layer fashion. Other embodiments include a locally resilient pressure conduction composite, a flexible substrate completely surrounding the composite so as to seal it therein, and a pair of electrical leads contacting the composite and terminating outside of the flexible substrate. Pressure conduction composites are composed of a plurality of conductive particles electrically isolated within a non-conductive matrix. Conductive particles are loaded so as to have a volume fraction approaching the critical percolation threshold of the material system and exhibit a conductance that greatly increases with pressure. Sensors may be arranged to form one or more arrays including planar and conformal configurations. The present invention has immediate application in keyboards, intrusion systems, control systems, submarines, ships, sonobuoys, doors, and switches.
Owner:QORTEK

Polymer with transient liquid phase bondable particles

A technique of forming a metallurgical bond between pads on two surfaces is provided. A metal coating placed on each surface includes a first metal base layer and a second metal surface layer. The first and second metals include a low melting point constituent. A first ratio of the two metals forms a liquid phase with a second ratio of the two metals forming a solid phase. The volume of the base layer metal exceeds the volume necessary to form the solid phase between the base metal and the surface metal. Conductive metal particles are provided having a core metal and a coating metal dispersed in an uncured polymer material, at a volume fraction above the percolation threshold. The core metal and the coating metal together include a low melting point constituent. At a first ratio the components form a liquid phase and at a second ratio the two components form a solid phase. The polymer containing particles is placed between the two metal surfaces with the particles interfacing with each other and the surface layer of metal. The structure is heated to a temperature higher than the low melting liquid constituent to form a liquid phase which extends to include the surface of the pads and the surface of the particles, and thereafter form a solid phase by diffusion of the core material into the surface material and the base metal into the coating material.
Owner:GLOBALFOUNDRIES INC +1

Composite medium film material based on polyvinylidene fluoride and graphene, and preparation method thereof

The invention which discloses a composite medium film material based on polyvinylidene fluoride and graphene, and a preparation method thereof belongs to the technical field of electric functional materials. The composite medium film is obtained through compounding polyvinylidene fluoride and graphene, wherein the graphene mass percent content is 0.5-3% of the mass of the composite medium film. The preparation method comprises the following steps: preparing an organic solution (a system A) of polyvinylidene fluoride powder; adding graphene powder to the system A to obtain a system B; spraying the system B on the surface of a substrate through adopting an ultrasonic atomization technology; and drying the system B sprayed on the surface of the substrate to obtain the composite medium film material based on the polyvinylidene fluoride and the graphene. According to the invention, the graphene which approaches and does not exceed a percolation threshold is added to a polyvinylidene fluoride film to obtain the composite medium film material with the dielectric constant 100% higher than that of the pure polyvinylidene fluoride film material, and the original flexibility and the easy processability are maintained; and the preparation method has the advantages of simplicity, easy control and low cost.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Polymer based temperature-sensitive resistance material with negative temperature coefficient (NTC) effect and preparation method thereof

The invention belongs to the technical field of manufacturing of conductive polymer composites, and in particular relates to a preparation method of a conductive polymer composite with negative temperature coefficient (NTC) characteristics. The invention discloses a polymer based temperature-sensitive resistance material with a NTC effect, and the polymer based temperature-sensitive resistance material comprises the following raw materials in parts by weight: 88.5-96.9 parts of a polymer 1 and a polymer 2, 0.1-1.5 parts of a conductive filler and 3-10 parts of a compatilizer; moreover, the conductive filler is selectively distributed in the polymer 2; the MFI of the polymer 1 is less than or equal to 7g/10 minutes, and the MFI of the polymer 2 is more than or equal to 12g/10 minutes; the thermal expansion coefficient of the polymer 2 is greater than that of the polymer 1, and the conductive filler is a two-dimensional conductive filler; and the mass ratio of the polymer 1 to the polymer 2 is (3:7)-(7:3). The resistance material prepared by the method disclosed by the invention is low in percolation threshold, the NTC characteristic repeatability of the obtained resistance material is good, and the resistance material is convenient to use for a long time.
Owner:ZHENGZHOU UNIV

Conductive polymer composite and preparation method thereof

The invention provides a conductive polymer composite and a preparation method thereof. The conductive polymer composite comprises 100 parts by weight of matrix and 0.01-1.5 parts by weight of conductive nanofiller, wherein the matrix is an incompatible polymer blend system with dual-continuous structure, and the length-diameter ratio of the conductive nanofiller is greater than or equal to 100. Compared with a conductive fibering polymer composite prepared from carbon black, polyethylene and polyethylene terephthalate in the prior art, the conductive polymer composite has the advantages that firstly, the length-diameter ratio of the conductive nanofiller adopted in the conductive polymer composite is larger, so that the insulated polymer can conduct electricity by few addition of the conductive nanofiller, thus the conductive percolation threshold of the conductive polymer composite is reduced; secondly, the matrix of the dual-continuous structure and the conductive polymer nanofiller are distributed on a two-phase interface of the incompatible polymer blend system with the dual-continuous structure, so that the conductive percolation threshold of the conductive polymer composite is reduced; and finally, the preparation method provided by the invention is simple, safe and environment-friendly.
Owner:CHANGCHUN INST OF APPLIED CHEMISTRY - CHINESE ACAD OF SCI

High-sensitivity pressure conduction sensor for localized pressures and stresses

A high-sensitivity pressure conduction sensor is presented. The present invention includes a pair of locally resilient conductive layers and a locally resilient pressure conduction composite disposed between and contacting both conductive layers. Alternate embodiments include at least three locally resilient conductive layers and at least two locally resilient pressure conduction composites, each having a critical percolation threshold. Each composite is disposed between and contacting two conductive layers in a multi-layer fashion. Other embodiments include a locally resilient pressure conduction composite, a flexible substrate completely surrounding the composite so as to seal it therein, and a pair of electrical leads contacting the composite and terminating outside of the flexible substrate. Pressure conduction composites are composed of a plurality of conductive particles electrically isolated within a non-conductive matrix. Conductive particles are loaded so as to have a volume fraction approaching the critical percolation threshold of the material system and exhibit a conductance that greatly increases with pressure. Sensors may be arranged to form one or more arrays including planar and conformal configurations. The present invention has immediate application in keyboards, intrusion systems, control systems, submarines, ships, sonobuoys, doors, and switches.
Owner:QORTEK

Polymer matrix composite material with high PTC strength and stability and preparation method thereof

InactiveCN102250400AGood dispersionSignificant PTC performancePolymer scienceVacuum drying
The invention discloses a polymer matrix composite material with high PTC strength and stability and a preparation method thereof, and the composite material comprises UHMWPE and PVDF, CB and MWNT conductive filling materials which are treated by surface treatment by a titanate coupling agent, and an antioxidant 1010; the preparation method comprises the following steps: performing surface treatment of the CB and MWNT conductive filling materials by the titanate coupling agent, performing vacuum drying of PVDF and UHMWPE with a volume ratio of 1:1, adding PVDF into a torque rheometer, heating and melting for 2 min, adding another matrix of UHMWPE and the antioxidant 1010, wherein the amount of the antioxidant 1010 is 1% of the total mass of the matrix; mixing the mixture of the two matrixes for 10 min, adding the filling materials, mixing at 250 DEG C for 15 min; after melt blending, performing hot pressing with a constant temperature of 250 DEG C and a constant pressure of 18 MPa for 10 min to obtain the sample. The composite material of the invention has good conductivity and low room-temperature conductivity, and has a conductivity of up to 10-1 near a percolation threshold; the conductivity of the composite material can be changed by adjusting the contents of the filling materials in the composite material; the composite material has high PTC strength, good repetition stability, and reduced NTC effect.
Owner:BEIJING UNIV OF CHEM TECH

Conductive composite material, preparation and use thereof

The invention discloses a conductive composite material and a manufacturing method and an application thereof, comprising a second polymer and the conductive composite which is combined with the second polymer and is provided with continuous phase, the conductive composite is composed of a first polymer and conductive filler which is contained in the first polymer and forms a conductive network, fusion temperature of the second polymer is higher than the fusion temperature of the first polymer, the invention adopts the manufacturing methods of stretching and heat treatment, so that the conductive composite material has relatively low percolation threshold after processing and forming, in addition, in the process of the processing, the conductive composite material can still maintain most of the mechanical properties after the heat treatment at relatively high temperature, thus ensuring that the whole material has fine conductivity and mechanical properties and can be applied to anti-static products, electromagnetic shielding products or circuits. The invention features easy operation of the manufacturing method, good universality and relatively easy recovery of the conductive composite material, in addition, the invention eliminates the problem in the prior art that the recovery of the composite material is difficult as the high strength fiber is added to the composite material to increase strength of the composite material.
Owner:JIANGSU ZJA NEW MATERIAL

Graphene-containing composite material as well as preparation method and application thereof

The invention discloses a graphene-containing composite material as well as a preparation method and application thereof. The graphene-containing composite material comprises a composite functional material with a double-conductive channel and a polymer matrix, wherein the composite functional material with the double-conductive channel is sulfonated graphene surface grafted conductive polymer poly-3,4-(ethylenedioxythiophene), and the structure formula is as shown in formula I in the specification. The composite functional material with the double-conductive channel and the graphene-containing composite material can be used for preparing a piezoresistance response material, or an antistatic or electromagnetic shielding material and the like and have excellent piezoresistance response, piezoresistance repeatability and electromagnetic shielding effect. The graphene-containing composite material is simple and easy to operate, can be prepared in large scale and has excellent piezoresistance performance and sensitive piezoresistance response, the percolation threshold is 0.5Wt%, original performance of the polymer can be maintained, and an unstable conductive network system can be formed to be beneficial to improving the sensitivity of piezoresistance response.
Owner:SHANGHAI UNIV OF ENG SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products