Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1880results about "Furnace cooling" patented technology

Mounting arrangement for auxiliary burner or lance

A mounting enclosure and an improved mounting arrangement for apparatus used in metal melting, refining and processing, particularly those apparatus adapted for steel making in an electric arc furnace, such as burners, lances and the like with supersonic oxygen lancing capability and injectors or the like for the introduction of particulate matter. The mounting enclosure is fluid cooled to survive the hostile environment of the electric arc furnace and is designed to occupy the step between the side wall and hearth of the furnace without any substantial change to the structure of the furnace. The mounting enclosure comprises a plurality of fluid cooling conduits surrounding an apparatus aperture and an injector aperture which are formed through the enclosure and adapted to mount an apparatus and an injector. The mounting arrangement includes utilizing the mounting enclosure to mount an apparatus with supersonic oxidizing gas lancing capability and an injector for particulate carbon in an electric arc furnace. Because the mounting enclosure is approximately the width of the step, the discharge openings of the apparatus and the injector are moved closer to the surface of the melt and toward the center of the furnace thereby providing increased efficiency. The discharge openings will now be extended to near the edge of the step so that the oxidizing gas flow pattern of the apparatus does not degrade the hearth material or other furnace equipment mounted nearby and the carbon flow pattern of the injector sufficiently agitates the slag to produce foaming.
Owner:PROCESS TECH INT

Mounting arrangement for auxiliary burner or lance

A mounting block and an improved mounting arrangement for apparatus used in metal melting, refining and processing, particularly those apparatus adapted to steel making in an electric arc furnace, such as burners, lances and the like with supersonic oxygen lancing capability. The mounting block is fluid cooled to survive the hostile environment of the electric arc furnace and is designed to rest on the step between the side wall and hearth of the furnace without any substantial change to the structure of the furnace. The mounting block comprises a plurality of fluid cooling conduits surrounding an aperture which is formed through the block and adapted to mount the apparatus. The mounting arrangement includes utilizing the mounting block to mount an apparatus with supersonic oxidizing gas or lancing capability in an electric arc furnace. The apparatus is mounted by passing it through an aperture in a water cooled side panel aligned with the mounting aperture in the mounting block. Because the mounting block is approximately the width of the step, the discharge opening of the apparatus is moved closer to the surface of the melt and toward the center of the furnace thereby providing increased efficiency. The discharge opening will now also extend past the inner edge of the step so that the oxidizing gas flow pattern does not degrade the hearth material and other furnace equipment mounted nearby.
Owner:PROCESS TECH INT

Method for melting and decarburization of iron carbon melts

A method and an apparatus for advantageously introducing a flame and a high velocity oxidizing gas into a furnace for metal melting, refining and processing, particularly steel making in an electric arc furnace. The steel making process of an electric arc furnace is made more efficient by shortening the time of the scrap melting phase and introducing an effective high velocity oxidizing gas stream into the process sooner to decarburize the melted metal. In one implementation of an apparatus, improved efficiency is obtained by mounting a fixed burner / lance closer to the hot face of the furnace refractory at an effective injection angle. This mounting technique shortens the distance that the flame of the burner has to melt through the scrap to clear a path to the molten metal and shortens the distance the high velocity oxygen from the lance travels to the slag-metal interface thereby increasing its penetrating power. The method additionally includes supplying a plurality of reaction zones with the high velocity oxidizing gas to decarburize the melted metal. The plurality of reaction zones increases the surface area available for the reaction thereby allowing a more rapid rate of decarburization and a more homogenous metal bath. The reaction zones are supplied with the high velocity oxidizing gas according to an oxygen supply profile which is related to the carbon content of the metal bath. In this manner an optimal amount of oxygen can be introduced into the metal bath to shorten the decarburization process without producing excessive oxidation of the metal bath and excessive free oxygen in the furnace.
Owner:PROCESS TECH INT

Mounting arrangement for auxiliary burner or lance

A mounting enclosure and an improved mounting arrangement for apparatus used in metal melting, refining and processing, particularly those apparatus adapted for steel making in an electric arc furnace, such as burners, lances and the like with supersonic oxygen lancing capability and injectors or the like for the introduction of particulate matter. The mounting enclosure is fluid cooled to survive the hostile environment of the electric arc furnace and is designed to occupy the step between the side wall and hearth of the furnace without any substantial change to the structure of the furnace. The mounting enclosure comprises a plurality of fluid cooling conduits surrounding an apparatus aperture and an injector aperture which are formed through the enclosure and adapted to mount an apparatus and an injector. The mounting arrangement includes utilizing the mounting enclosure to mount an apparatus with supersonic oxidizing gas lancing capability and an injector for particulate carbon in an electric arc furnace. Because the mounting enclosure is approximately the width of the step, the discharge openings of the apparatus and the injector are moved closer to the surface of the melt and toward the center of the furnace thereby providing increased efficiency. The discharge openings will now be extended to near the edge of the step so that the oxidizing gas flow pattern of the apparatus does not degrade the hearth material or other furnace equipment mounted nearby and the carbon flow pattern of the injector sufficiently agitates the slag to produce foaming.
Owner:PROCESS TECH INT

Method And Apparatus For Cooling A Material To Be Removed From The Grate Of A Fluidized Bed Furnace

The invention relates to a method and an apparatus for cooling a material to be removed from the grate of a fluidized bed furnace. Material at a high temperature is passed from the grate of the fluidized bed furnace into a fluidized bed cooler in charges of a given size by measuring the quantity of the material accumulating in the fluidized bed cooler. When the quantity of the material in the cooler has reached a predetermined limit value, the supply of material into the fluidized bed cooler is prevented. The charge is cooled in the fluidized bed cooler by fluidization air and via heat transfer into a cooling liquid circulation system and the temperature of the charge is measured. The charge is removed when the temperature of the charge has fallen to a predetermined limit value. The second end (5) of a supply conduit (3) is provided with a supply valve (15) actuated by a power means (16). A discharge conduit (14) is provided with a discharge valve (17) actuated by a second power means (18). Quantity detection means (19, 20) are provided to produce quantity data regarding the amount of material in a fluidized bed space (11), and temperature measuring means (21) are provided to produce temperature data. A control device (22) controls the first power means (16) to open and close the supply valve (15) and the second power means (18) to open and close the discharge valve (17) on the basis of the quantity data and temperature data and the predetermined limit values of quantity and temperature so that the loading of material into the fluidized bed space and its cooling and removal from the fluidized bed space take place in a charge-by-charge and cyclic manner.
Owner:OUTOTEC OYJ

Method for particulate introduction for metal furnaces

A method and an apparatus for advantageously introducing a flame, a high velocity oxidizing gas, and a high velocity particulate flow into a furnace for metal melting, refining and processing, for example, steel making in an electric arc furnace. The steel making process of an electric arc furnace is made more efficient by shortening the time of the scrap melting phase, introducing a more effective high velocity oxidizing gas stream into the process sooner to decarburize the melted metal and introducing a more effective particulate injection to reduce FeO, form or foam slag and/or recarburize. Improved efficiency is obtained by mounting a fixed burner/lance and carbon injector lower and closer to the hot face of the furnace refractory at an effective injection angle. This mounting technique shortens the distance that the flame of the burner has to melt through scrap to clear a path to the molten metal, and shortens the distance the high velocity oxygen and high velocity particulates travel to the slag-metal interface. One method includes supplying a plurality of oxidizing reaction zones with the high velocity oxidizing gas to decarburize the melted metal and a plurality of particulate reaction zones with high velocity flows of particulate carbon for reducing FeO and/or forming foamy slag. The particulate reaction zones are located on the downstream side of the oxidizing gas reaction zones so as to minimize any effect of the reduction reaction on the decarburization reaction and to recover a part of the hot FeO produced in the oxidizing gas reaction zones.
Owner:PROCESS TECH INT

Improved blast circular cooling machine

The present invention discloses an improved rotary forced-air cooler, which comprises a double layer trolley, a supporting beam structure, a material blocking proof air duct sealing plate arranged at the connecting part of the double layer trolley and an air supplying system, a double layer trolley unit static seal device and an air duct device. The supplying system structure is based on a rectangular beam, a triangle beam is arranged on the rectangular beam, and a plurality of ventilation channels are arranged on the bevel edge steel plates at the both waists; an air duct pipe is arranged on the air vent of the material blocking proof air duct sealing plate, an inclined plate inclining upwards from the air vent at the bottom part of the air duct pipe has a transition to a horizontal plate, a stopping ventilation fence is added to the air duct pipe at the side of the trolley; two rubber sealing parts with extended bottom edges are arranged at the outer sides of the lower parts of inner and outer sealing plates of the double layer trolley unit static seal device, an ash baffle plate which can move up and down is hung at the inner side; an air water sealing wave subduing device adopting a damping plate is arranged on the air duct device. The present invention further improves the sealing performance of the equipment, and reduces energy consumption and pollution.
Owner:ZHONGYE-CHANGTIAN INT ENG CO LTD

Method for particulate introduction for metal furnaces

A method and an apparatus for advantageously introducing a flame, a high velocity oxidizing gas, and a high velocity particulate flow into a furnace for metal melting, refining and processing, for example, steel making in an electric arc furnace. The steel making process of an electric arc furnace is made more efficient by shortening the time of the scrap melting phase, introducing a more effective high velocity oxidizing gas stream into the process sooner to decarburize the melted metal and introducing a more effective particulate injection to reduce FeO, form or foam slag and / or recarburize. Improved efficiency is obtained by mounting a fixed burner / lance and carbon injector lower and closer to the hot face of the furnace refractory at an effective injection angle. This mounting technique shortens the distance that the flame of the burner has to melt through scrap to clear a path to the molten metal, and shortens the distance the high velocity oxygen and high velocity particulates travel to the slag-metal interface. One method includes supplying a plurality of oxidizing reaction zones with the high velocity oxidizing gas to decarburize the melted metal and a plurality of particulate reaction zones with high velocity flows of particulate carbon for reducing FeO and / or forming foamy slag. The particulate reaction zones are located on the downstream side of the oxidizing gas reaction zones so as to minimize any effect of the reduction reaction on the decarburization reaction and to recover a part of the hot FeO produced in the oxidizing gas reaction zones.
Owner:PROCESS TECH INT

Sintered ring cold exhaust heat stepped recovery power generation system and technique

A sintering circulating cooling waste heat cascade recovery power generation system and a process thereof belong to the sintering waste heat utilization technology field. The system comprises a sintering circulating cooling machine, a windward chamber, a leeward chamber, a heat exchanger, a fan, a waste heat boiler, a steam bag, a superheater, an evaporator, an oxygen remover, a steam turbine, a generator, a condenser, a condensate pump and a water supply pump. The totally closed system is adopted to carry out subsection cooling and cascade recovery of waste heat of sinter, thereby recovering the sensible heat of the sinter to the maximum extent; the gradual increase of the temperature of cooling air can reduce the heat exchange temperature difference with the sinter; in order to not affect the cooling effect of the sinter, the system adopts the combined mode of the sub-cycle of the cooling air and the major cycle to absorb the sensible heat of the sinter, thereby improving the waste heat recovery efficiency. Compared with the prior art, the system and the process can extremely recover the waste heat of the sinter, improve the temperature of steam which is used for power generation under the premise of not increasing the total circulating air volume, increase the waste heat power generation amount and have great economic effects.
Owner:SHOUGANG CORPORATION +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products