Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

50 results about "Macrocyclic ligand" patented technology

In chemistry, a macrocyclic ligand is a macrocycle with a ring size of at least nine (including all hetero atoms) and three or more donor sites. Classic examples are crown ethers and porphyrins. Macrocyclic ligands exhibit particularly high affinity for metal ions.

Modified mesoporous silica adsorbent and preparation method and application thereof

The invention relates to a modified mesoporous silica adsorbent and a preparation method and application thereof. Under the catalysis of potassium carbonate and potassium iodide, aza-macrocyclic ligand is modified onto the surface of chlorine group functional mesoporous silica through nucleophilic substitution, and the adsorbent is prepared; palladium recycling and enrichment under different nitric acid concentrations are achieved through the adsorbent, and the selective recovery performance of palladium in highly-active effluent simulated feed liquid is evaluated. According to the modified mesoporous silica adsorbent, mesoporous nanomaterials are combined with the supermolecule recognition performance of the aza-macrocyclic ligand, the problems that selectivity is poor, operation is complex, the raw material cost is high and the stability is poor in the traditional treatment technology for palladium in highly-active effluent are solved, and the adsorbent has the advantages of being good in selectivity, large in adsorption capacity, high in adsorption speed and easy to recycle for palladium within the wide nitric acid concentration range, and has the great practical significance in the aspects of nuclear fuel reprocessing and hydrometallurgy.
Owner:TSINGHUA UNIV

Process for producing a complex of a lanthanide with a macrocyclic ligand

InactiveCN105073144ABook and dependent claims are obviousEmulsion deliveryIn-vivo testing preparationsCyclamGadolinium
The present invention relates to a process for preparing a macrocyclic ligand and for producing a pharmaceutical liquid formulation comprising a complex of said ligand with a lanthanide or similar compounds. The macrocyclic ligand of the present invention is a derivative of tetraaza macrocycles such as 1,4,7,10-tetraazacyclododecane (cyclen), 1,4,7,10-tetrazacyclotridecan (homocyclen) and 1,4,8,11-tetraazacyclotetradecane (cyclam), such as DOTA, TRITA, TETA, DOTMA, TCE-DOTA, DOTA-pNB, D03A, HP-D03A, D03A-butrol, D03MA, ODOTRA, D03A-L2, DOTP, DOTMP, DO2a, THP, THED, DOTAM, DOTTA. The preferred lanthanide and similar compounds are Gadolinium (Gd), Yttrium (Y) and Terbium (Tb). The process of the present invention aims to obtain an accurate balance between the ligand and the lanthanide, and to avoid the presence of free lanthanide in said formulation, by calculating the necessary amount of ligand for a formulation batch, measuring the moisture content of a sample of the material in said batch, calculating the total amount of moisture present of the batch and calculating the total amount of material which is required to prepare the batch size. In this way, the production of a pharmaceutical liquid formulation comprising a complex of a macrocyclic ligand with lanthanide is more accurate, faster and easier. The present invention is thus useful for the production of pharmaceutical liquid formulations comprising a complex of a macrocyclic ligand with a lanthanide, which can be used as contrast agents for magnetic resonance imaging.
Owner:T2PHARMA GMBH

Treatment method of methylene blue dye waste water

The invention discloses a treatment method of methylene blue dye waste water. The treatment method comprises the following steps: firstly, an aza-macrocyclic ligand, potassium iodide and potassium carbonate are dissolved in an organic solvent, mesoporous silica with a functional chlorine group is added under the protection of nitrogen, the mixture is subjected to a reflux reaction for 20-40 h while being constantly stirred and is cooled to the room temperature after the reaction ends, a product is obtained after filtration, washed with ethanol and water 2-5 times alternately and dried under a vacuum condition at the temperature of 60-80 DEG C for 12-16 h, and a modified silica adsorbent is obtained; then the modified silica adsorbent is added to the methylene blue dye waste water, the pH of the dye waste water is adjusted to range from 5 to 10, the mixture is stirred at the speed of 3,000-5,000 r/m for 24-28 h, left to stand still and filtered to remove the adsorbent adsorbing methylene blue dye, and the methylene blue dye in the waste water is removed. The method is simple, convenient and quick to operate, the treatment cost is low, the adopted adsorbent can adsorb a large amount of dye, and the methylene blue dye in the methylene blue dye waste water can be effectively removed.
Owner:DONGGUAN LIANZHOU INTPROP OPERATION MANAGEMENT CO LTD

A kind of modified mesoporous silica adsorbent and its preparation method and application

The invention relates to a modified mesoporous silica adsorbent and a preparation method and application thereof. Under the catalysis of potassium carbonate and potassium iodide, aza-macrocyclic ligand is modified onto the surface of chlorine group functional mesoporous silica through nucleophilic substitution, and the adsorbent is prepared; palladium recycling and enrichment under different nitric acid concentrations are achieved through the adsorbent, and the selective recovery performance of palladium in highly-active effluent simulated feed liquid is evaluated. According to the modified mesoporous silica adsorbent, mesoporous nanomaterials are combined with the supermolecule recognition performance of the aza-macrocyclic ligand, the problems that selectivity is poor, operation is complex, the raw material cost is high and the stability is poor in the traditional treatment technology for palladium in highly-active effluent are solved, and the adsorbent has the advantages of being good in selectivity, large in adsorption capacity, high in adsorption speed and easy to recycle for palladium within the wide nitric acid concentration range, and has the great practical significance in the aspects of nuclear fuel reprocessing and hydrometallurgy.
Owner:TSINGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products