Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

181 results about "Bicmos process" patented technology

BiCMOS process is essentially a combination of Bipolar transistor and CMOS transistors, it offers many technical advantages and some semiconductor foundries still provide access to BiCMOS technology. Besides having BiCMOS wafer production as an ongoing business they also have a clear roadmap to develop more advanced nodes...

Devices with adjustable dual-polarity trigger- and holding-voltage/current for high level of electrostatic discharge protection in sub-micron mixed signal CMOS/BiCMOS integrated circuits

Symmetrical/asymmetrical bidirectional S-shaped I-V characteristics with trigger voltages ranging from 10 V to over 40 V and relatively high holding current are obtained for advanced sub-micron silicided CMOS (Complementary Metal Oxide Semiconductor)/BiCMOS (Bipolar CMOS) technologies by custom implementation of P1-N2-P2-N1//N1-P3-N3-P1 lateral structures with embedded ballast resistance 58, 58A, 56, 56A and periphery guard-ring isolation 88-86. The bidirectional protection devices render a high level of electrostatic discharge (ESD) immunity for advanced CMOS/BiCMOS processes with no latchup problems. Novel design-adapted multifinger 354/interdigitated 336 layout schemes of the ESD protection cells allow for scaling-up the ESD performance of the protection structure and custom integration, while the I-V characteristics 480 are adjustable to the operating conditions of the integrated circuit (IC). The ESD protection cells are tested using the TLP (Transmission Line Pulse) technique, and ESD standards including HBM (Human Body Model), MM (Machine Model), and IEC (International Electrotechnical Commission) IEC 1000-4-2 standard for ESD immunity. ESD protection performance is demonstrated also at high temperature (140° C.). The unique high ratio of dual-polarity ESD protection level per unit area, allows for integration of fast-response and compact protection cells optimized for the current tendency of the semiconductor industry toward low cost and high density-oriented IC design. Symmetric/asymmetric dual polarity ESD protection performance is demonstrated for over 15 kV HBM, 2 kV MM, and 16.5 kV IEC for sub-micron technology.
Owner:INTERSIL INC +1

Devices with adjustable dual-polarity trigger- and holding-voltage/current for high level of electrostatic discharge protection in sub-micron mixed signal CMOS/BiCMOS integrated circuits

Symmetrical / asymmetrical bidirectional S-shaped I-V characteristics with trigger voltages ranging from 10 V to over 40 V and relatively high holding current are obtained for advanced sub-micron silicided CMOS (Complementary Metal Oxide Semiconductor) / BiCMOS (Bipolar CMOS) technologies by custom implementation of P1-N2-P2-N1 / / N1-P3-N3-P1 lateral structures with embedded ballast resistance 58, 58A, 56, 56A and periphery guard-ring isolation 88-86. The bidirectional protection devices render a high level of electrostatic discharge (ESD) immunity for advanced CMOS / BiCMOS processes with no latchup problems. Novel design-adapted multifinger 354 / interdigitated 336 layout schemes of the ESD protection cells allow for scaling-up the ESD performance of the protection structure and custom integration, while the I-V characteristics 480 are adjustable to the operating conditions of the integrated circuit (IC). The ESD protection cells are tested using the TLP (Transmission Line Pulse) technique, and ESD standards including HBM (Human Body Model), MM (Machine Model), and IEC (International Electrotechnical Commission) IEC 1000-4-2 standard for ESD immunity. ESD protection performance is demonstrated also at high temperature (140° C.). The unique high ratio of dual-polarity ESD protection level per unit area, allows for integration of fast-response and compact protection cells optimized for the current tendency of the semiconductor industry toward low cost and high density-oriented IC design. Symmetric / asymmetric dual polarity ESD protection performance is demonstrated for over 15 kV HBM, 2 kV MM, and 16.5 kV IEC for sub-micron technology.
Owner:INTERSIL INC +1

Silicone substrate high-linearity low-phase-shift ultra-broad-band digital attenuator

ActiveCN103427781AOvercoming lossTo overcome the large additional phase shiftMultiple-port networksEngineeringField-effect transistor
The invention discloses a silicone substrate high-linearity low-phase-shift ultra-broad-band digital attenuator which comprises a 1dB attenuating module, a 2dB attenuating module, a 4dB attenuating module, a 8dB attenuating module and a 16dB attenuating module. Two NMOS field effect transistors which are of a channel parallel-connection resistor structure and of a solid suspension structure and manufactured through SiGe BiCMOS technology are adopted to be used as control switches, five sets of complementary digital signals are used for controlling the five attenuating modules independently to work, a low-pass network is used for conducting phase compensation, inductance is used for matching between the adjacent attenuating modules, matching between the input end of the1dB attenuating module and 50 omega input impedance and matching between the output end of the 16dB attenuating module and 50 omega output impedance are realized through transmission wires, the working frequency range is 1-25GHz, and low-differential-loss low-phase-shift attenuation of signal amplitudes under 32 states can be realized with the 1dB length stepping in the attenuating range of 0-31dB. The silicone substrate high-linearity low-phase-shift ultra-broad-band digital attenuator has the advantages of being low in differential loss, low in accessory phase shift, high in linearity, low in production cost and low in chip area, and can be used for large-amplitude signal processing and single chip integration.
Owner:XIDIAN UNIV

PNP bipolar transistor in SiGe BiCMOS technology

The present invention discloses a PNP bipolar transistor in a SiGe BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) technology, an active region of the bipolar transistor is isolated by making use of shallow groove field oxide layers and comprises a collector region, a base region and an emitter region, wherein the collector region is formed by a P-type buried layer located at the bottom of the shallow groove, and led out by making a deep trap contact on the field oxide layers; the base region is formed by N-type ion implantation in the active region, peripheral sides of the base region are the shallow groove field oxide layers, width of the base region is equal to depth of the shallow groove, and the bottom of the base region is connected with the collector region; an N-type buried layer is formed at the bottom of the shallow groove located at the opposite side of the collector region, the base region is connected with the N-type buried layer and led out by making the deep trap contact on the field oxide layer on the N-type buried layer; and the emitter region is formed by a P-type ion implantation layer formed above the base region or by further providing a P-type polycrystalline silicon. The PNP bipolar transistor in the present invention can reduce area of the PNP transistor and raise current amplification factor of the PNP transistor.
Owner:SHANGHAI HUAHONG GRACE SEMICON MFG CORP

Method for manufacturing monolithic polysilicon cantilever structure

The invention relates to a method for manufacturing a monolithic polysilicon cantilever structure. In the invention, a processing step of the polysilicon cantilever structure is inserted in a conventional BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) technical process, the deposition and the annealing of polysilicon are finished and an MEMS (Micro-Electro-Mechanical Systems) high-temperature process is prevented from influencing on the metalation process before the metalation process. In the release process of the polysilicon cantilever structure, a special etching solution is adopted, and a negative photoresist is used as a post of the polysilicon cantilever structure so as to effectively avoid the problem of substrate adhesion in the cantilever structure release process by using a wet method. The method provided by the invention solves the technical problems of compatibility between a manufacture process of the polysilicon cantilever structure and a processing process of a BiCMOS circuit, realizes the monolithic integration of the polysilicon cantilever structure and a BiCMOS signal processing circuit, and can be widely applied to the monolithic integration manufacture field of MEMS sensors, such as capacitive accelerometers, gyroscopes, and the like.
Owner:NO 24 RES INST OF CETC

Vertical parasitic PNP device in BiCMOS (Bipolar Complementary Metal-Oxide-Semiconductor) process and preparation method thereof

The invention discloses a vertical parasitic PNP device in a BiCMOS (Bipolar Complementary Metal-Oxide-Semiconductor) process. The vertical parasitic PNP device comprises a collector region, a base region, an emitter region, a P type buried layer and N type polycrystalline silicon, wherein the buried layer is formed at a shallow trench filed oxide bottom surrounding the collector region and is in contact with the collector region through a deep hole formed at the top of the buried layer to lead out a collector electrode; the N type polycrystalline silicon is formed at the upper part of the base region and is used for leading out a base electrode; and the emitter region is composed of a P type shallow junction formed in the base region and P type polycrystalline silicon arranged above the base region. The invention also discloses a preparation method of the vertical parasitic PNP device in the BiCMOS process. The device disclosed by the invention can serve as an output device in a high-speed high-gain BiCMOS circuit, and therefore another device choice is provided for the circuit. According to the invention, the area of the device can be reduced effectively, the resistance of the collector electrode of a PNP transistor can be lowered, the frequency performance of the device can be improved and the gain of the device can be enhanced. No extra process condition is required in the preparation method disclosed by the invention, thereby reducing the production cost.
Owner:SHANGHAI HUAHONG GRACE SEMICON MFG CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products