Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3134results about How to "Avoid side effects" patented technology

Method and system for gastric ablation and gastric pacing to provide therapy for obesity, motility disorders, or to induce weight loss

Method and system to provide therapy for obesity, gastric motility, or to induce weight loss comprises ablating the gastric tissue around the “pacemaker” region of the stomach, and electrically pacing the stomach with a pulse generator/stimulator to control the electrical activity of the gastric muscle. The ablation to the gastric tissue may be from the epigastric side, or may be from inside the stomach. The ablation may be performed utilizing any one of: radiofrequency catheter ablation; radiofrequency catheter ablation using an irrigated tip catheter; microwave ablation; cryoablation; high intensity focused ultrasound (HIFU) ablation; and laser ablation. The ablation of the “pacemaker” region of the stomach may be partial or complete. A gastric pulse generator/stimulator is implanted to provide electrical pulses to the stomach. The function of the gastric stimulator after complete ablation of the pacemaker region, is to provide a basic electrical rhythm (BER) to regulate and control electrical activity of the stomach. Alternatively, if partial ablation is performed the function of the gastric pulse generator/stimulator is to enhance the residual basic electrical rhythm (BER), or to interfere with the residual basic electrical rhythm (BER).
Owner:BOVEJA BIRINDER R +1

Permanent magnet synchronous motor (PMSM) servo system control method based on fuzzy and active disturbance rejection control

The invention relates to a PMSM servo system control method based on fuzzy and active disturbance rejection control. A position signal is given by a differential tracker to arrange a transition process so that the contradiction between rapidness and overshoot of a system is solved, and uncertainty, friction torques and external disturbance due to modeling errors of the system are observed via an expansion state observer; according to the error between the differentials generated by the differential tracker and state variation generated by the expansion state observer, a fuzzy inference rule is obtained with application of experimental experience of technical staff, so that a fuzzy rule control table of an error proportion coefficient, a differential coefficient and an integration coefficient is established; accurate control amount is obtained after de-fuzzification, so that parameter self-adaptive adjustment of a nonlinear error feedback control law is realized; and compensation amounts of the nonlinear error feedback control law and the expansion state observer to the total disturbance forms the control amount, thereby realizing optimal control for an controlled object. The method of the invention improves both tracking precision and disturbance rejection capability of the system.
Owner:HUNAN UNIV

Method for controlling PMSM (permanent magnet synchronous motor) servo system based on friction and disturbance compensation

The invention discloses a method for controlling a PMSM (permanent magnet synchronous motor) servo system based on friction and disturbance compensation. In the method, a feedforward compensation method based on a friction model is combined with an auto disturbance rejection technology and the feedforward compensation method is complementary with the auto disturbance rejection technology mutually. In the method, a Stribeck friction model is utilized to carry out modeling on system frictions, a GA (genetic algorithm) is adopted to carry out offline identification on parameters, and an estimated value generated by an identification model carries out feedforward compensation; a state observer in the auto disturbance rejection technology observes and compensates overcompensation or undercompensation of the frictions as well as nondeterminacy and external disturbance caused by modeling errors in the system; and finally a differential tracker and a nonlinear control law are used to arrange a transient process for fixed position signals, thus solving the conflict between rapidity and overstrike and ensuring stability of the system and finite time convergence. By using the combined control, the compensation capacity of the system for the frictional nonlinearity can be improved effectively, the low-speed performance of the system is improved, and the tracking accuracy and the anti-disturbance capacity of the system are enhanced.
Owner:SOUTHEAST UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products