Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

83 results about "Metabolic network" patented technology

A metabolic network is the complete set of metabolic and physical processes that determine the physiological and biochemical properties of a cell. As such, these networks comprise the chemical reactions of metabolism, the metabolic pathways, as well as the regulatory interactions that guide these reactions.

High-yield 3-Methionol saccharomyces cerevisiae engineering bacteria and preparation method and application thereof

InactiveCN103409331AIdentify key metabolic nodesOptimizing Fermentation MediumFungiMicroorganism based processesEnzyme GeneMetabolic network
The invention relates to high-yield 3-Methionol saccharomyces cerevisiae engineering bacteria and a preparation method and application thereof, and belongs to the technical field of biological preparation of food flavors. According to the high-yield 3-Methionol saccharomyces cerevisiae engineering bacteria and the preparation method and application thereof, the engineering bacteria is designed and constructed through the coupling excessive expression of an aminotransferase gene (ARO9) and a decarboxylase gene (ARO10) and the knock-out of a methylthio lyase gene (CY3) in the anabolic pathway of Methionol by taking Saccharomyces cerevisiae S288c as an original strain; the expression of two key enzyme genes in a main synthetic pathway is enhanced, and the expression of the CY3 gene in a side reaction pathway is reduced or eliminated; the bred engineering bacteria (converter) is subjected to multiple-time passage and stable in inheritance, so that the metabolic network and metabolic pathway of the biological synthesis of the Methionol are optimized, and the metabolic flux and yield of the Methionol are obviously increased; a Methionol flavor prepared by fermenting and converting the engineering bacteria is single in structure and chirality and high in fragrance quality.
Owner:BEIJING TECHNOLOGY AND BUSINESS UNIVERSITY

Secondary approach transformation method based on instruction of FK506 production bacterial strain wave chain streptomycete genome scale metabolic network model

The invention discloses a secondary approach transformation method based on an instruction of an FK506 production bacterial strain wave chain streptomycete genome scale metabolic network model. The model is based on annotation genes and physiology and biochemistry information. By comparing and analyzing the model with a streptomyces coelicolor genome, metabolic genes are found being highly conservative. Metabolic flux analysis is performed on a genome scale metabolic network, and therefore the model predicts a mutation bacterium secondary approach gene cluster transformation strategy for improving a production level. According to the secondary approach transformation method based on the instruction of the FK506 production bacterial strain wave chain streptomycete genome scale metabolic network model, the transformation method utilizes the genome scale metabolic network model to predict special structural genes in an FK506 bacterial strain secondary approach gene cluster, the production level of bacterial strains after transformation is improved by 20 percent to 90 percent, the special structural genes in the gene cluster are augmented to improve production capacity, and large application value is achieved in secondary approach rational transformation of microorganism immunosuppressor production bacterial strains. The high-efficiency and systematic method is provided for optimizing of the bacterial strains.
Owner:TIANJIN UNIV

Cold-coagulation-blood-stasis-syndrome-resistant differential metabolite metabolic pathway and study method of Chinese angelica-based cold-coagulation blood-stasis treatment decoction

The invention discloses a cold-coagulation-blood-stasis-syndrome-resistant differential metabolite metabolic pathway and study method of a Chinese angelica-based cold-coagulation blood-stasis treatment decoction. The method comprises: detecting and analyzing endogenous metabolites changed at different time points after cold-coagulation blood-stasis symptoms forming of a female rat under an ice-water bath and epinephrine induction and Chinese angelica-based cold-coagulation blood-stasis treatment decoction intervention by using an ultra-high performance liquid chromatography tandem mass spectrometry so as to obtain a fingerprint spectrum; with a multivariate variable statistical analysis method, carrying out screening from a plurality of variables and identifying 21 significantly changed metabolites; and enriching eight metabolic pathways related to different development stages of the cold-coagulation blood-stasis symptom by using ametaboanalyst open-source online metabonomics analysiswebsite. According to the invention, the related metabolic changes in the occurrence and development process of the old-coagulation blood-stasis symptoms and the treatment process of the Chinese angelica-based cold-coagulation blood-stasis treatment decoction are studied by using a dynamic analysis method; the disease occurrence and development mechanisms at different time points can be revealed;and the abnormal metabolic network regulated and controlled by medicines in the treatment process can be clarified.
Owner:GUANGXI MEDICAL UNIVERSITY

Non-culturable microorganism screening system based on generative adversarial network principle

The invention discloses a non-culturable microorganism screening system based on a generative adversarial network principle, which performs data processing on non-culturable microorganisms to obtain metabolic network and genome data, inputs the metabolic network and genome data into a model shown in figure 1 to obtain a series of culture medium components, and performs automatic sampling, plate sealing, cultivation and detection to obtain a cultivation result. The results are input into a training network to improve a parameter optimization model. Data distribution difference exists between non-culturable microorganisms and culturable microorganisms, the system utilizes migration learning and based on the generative adversarial network principle, the non-culturable microorganisms are takenas a target domain data set, the culturable microorganism data set is taken as a source domain data set, the characteristic space distribution difference between a source domain and a target domain is reduced through a discriminator principle of the generative adversarial network, knowledge migration from the culturable microorganisms to the non-culturable microorganisms is completed, the automation system is enabled to be more complete, and the purpose of improving the accuracy of predicting a culture medium formula is achieved.
Owner:HAINAN UNIVERSITY

Tissue metabolism network research method for toxic effect of atmospheric particulate matters

The invention provides a tissue metabolism network research method for a toxic effect of atmospheric particulate matters, wherein the method includes the following steps: S1, collecting atmospheric particulate matters in a research area and preparing an atmospheric particulate matter suspension; S2, carrying out intratracheal instillation on the atmospheric particulate matter suspension into a tested animal body to simulate the exposure of a human body to the atmospheric particulate matters; S3, after the end of the experiment period, collecting the liver, lung and serum of the tested animal;S4, carrying out metabolome analysis of the liver, lung and serum through a liquid chromatography-mass spectrometry combined platform, and determining labeled metabolites of the liver, lung and serumrespectively; and S5, determining key metabolic network through the correlation analysis and the network analysis, and determining key labeled metabolites by the network node centrality evaluation. With use of network analysis, key metabolic markers of multiple tissues are determined through a network model, a method is provided for identifying key marker metabolites in multiple tissue metabolismdata under different phenotypes, and the accuracy of identification of the metabolic markers is improved.
Owner:INST OF URBAN ENVIRONMENT CHINESE ACAD OF SCI +1

Method for constructing dynamic metabolic network based on topological structure of elementary reactions

The invention discloses a constructing method for a dynamic metabolic network. The method comprises the steps that (a), for the dynamic metabolic network to be constructed, all isolated reactions andregulation reactions are found out, the number of redundant elementary reaction rate constants in each isolated reaction is determined; (b), Michaelis Menten kinetic parameters of all the isolated reactions and the regulation reactions are obtained from in vitro experiments or from existing enzymology databases; (c / d), for each isolated reaction and regulation reaction, absolute values and / or relative values of all the other basic reaction rate constants are calculated; (e) by steps (c) and (d), the rate constants of the elementary reactions are obtained, by computers, a dynamic metabolic network of an elementary reaction topological structure is constructed. The method does not need to deduce the analytical formulas of the Michaelis Menten kinetic rate equations one by one, under the premise of the thermodynamic equilibrium constants, the method is easy to obtain the elementary reaction rate constants involved in the regulation reactions, and suitable for constructing a large-scalemetabolic network by computers.
Owner:EAST CHINA UNIV OF SCI & TECH

Volume dissolved oxygen transfer coefficient staged control method based on citric acid metabolic network

The invention discloses a volume dissolved oxygen transfer coefficient staged control method based on a citric acid metabolic network. The metabolic flow direction is controlled through controlling the dissolved oxygen of citric acid at different fermentation stages, so the yield of the citric acid is improved. In the whole fermentation process of the citric acid, seed liquid is inoculated into a fermentation tank at the inoculation quantity of 8 percent, the temperature is maintained at 37 DEG C, the tank pressure is 0.05 MPa, the stirring speed is maintained at 84 rpm/min, and the air introduction quantity is controlled to be maintained to be 40m<3>/min in the fermentation beginning period, about 48m<3>/min in the fermentation medium period (the fermentation is started for about 2 to 3 hours) and 40m<3>/min in the fermentation later period. When the fermentation is carried out for about 58 hours, the reducing sugar content is detected, and the fermentation can be stopped when the reducing sugar content is reduced to a value lower than 5 percent. The dissolved oxygen transfer coefficient staged control is realized through optimizing the air introduction quantity at different fermentation stages, the improvement for improving the citric acid yield based on the metabolic network is realized, the process is simple and convenient and is easy to operate, the requirement on equipment is low, the energy consumption is little, and the method can be widely applied to citric acid production.
Owner:JIANGNAN UNIV

System for reproducing in vivo reaction in vitro

The invention belongs to the technical field of biological metabolism, and provides a system for reproducing an in vivo reaction in vitro. The system comprises the following steps: opening a computer, and dispatching kinetic parameters of related in vivo metabolism stored in a database; carrying out an intracellular and extracellular comparative dry experiment on a minimal metabolic network system only containing a cofactor metabolic intermediate CI, an enzyme, a substrate and a product; carrying out an intracellular and extracellular comparative experiment on an unrestraint metabolic network system containing a non-cofactor metabolic intermediate NCI, the cofactor metabolic intermediate CI, the enzyme, the substrate and the product; obtaining the influence of the concentration level of CI on the steady state level of NCI at high, middle and low inhibition levels; and simulating a gene knock-in and knock-out experiment by adjusting the enzyme content in the reaction process to obtain the result that the enzyme content has influence on the NCI and the reaction rate and that the inhibition mechanism, the cofactor metabolic intermediate CI, the enzyme content and the non-cofactor metabolic intermediate NCI have influence on intracellular reactions, and then an extracellular metabolic reaction system is obtained. The system provided by the invention makes up the blank of the industry.
Owner:EAST CHINA UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products