Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

169 results about "Shortwave radiation" patented technology

Shortwave radiation (SW) is radiant energy with wavelengths in the visible (VIS), near-ultraviolet (UV), and near-infrared (NIR) spectra. There is no standard cut-off for the near-infrared range; therefore, the shortwave radiation range is also variously defined. It may be broadly defined to include all radiation with a wavelength of 0.1μm and 5.0μm or narrowly defined so as to include only radiation between 0.2μm and 3.0μm.

Method and arrangement for the efficient generation of short-wavelength radiation based on a laser-generated plasma

InactiveUS20060215712A1Losses in the main pulse (e.g., due to transmission) are minimizedLaser using scattering effectsActive medium materialIon densityElectromagnetic radiation
The invention is directed to a method and an arrangement for the efficient generation of intensive short-wavelength radiation based on a plasma. The object of the invention is to find a novel possibility for the generation of intensive short-wavelength electromagnetic radiation, particularly EUV radiation, which permits the excitation of a radiation-emitting plasma with economical gas lasers (preferably CO2 lasers). This object is met, according to the invention, in that a first prepulse for reducing the target density is followed by at least a second prepulse which generates free electrons in the target by multiphoton ionization after a virtually complete recombination of free electrons generated by the first prepulse has taken place due to a long-lasting expansion of the target for reducing the target density, and the main pulse of a gas laser with a low critical electron density typical for its wavelength is directed to the target immediately after the second prepulse when the second prepulse in the expanded target, whose ion density corresponds to the critical electron density of the gas laser, has created enough free electrons so that an efficient avalanche ionization is triggered by the main pulse of the gas laser until reaching the ionization level for the desired radiation emission of the plasma.
Owner:XTREME TECH

Ionospheric-reflection-based time difference of arrival positioning method for shortwave radiation source

The invention discloses an ionospheric-reflection-based time difference of arrival positioning method for a shortwave radiation source, and belongs to the technical field of shortwave communication. The method comprises the following steps of selecting corresponding receiving sites to acquire found and monitored target signals; locally compressing the target signals, and transmitting the target signals to a master server; estimating propagation channels of the signals received by each receiving site, performing joint positioning error estimation in combination with each time difference of arrival, optimizing a positioning result according to the geographic position distribution of each receiving site and the variation amplitude of ionospheric parameters and the time differences of arrival, and giving a positioning error. According to the method, a conventional shortwave receiving antenna can be utilized, a large direction-finding antenna array is not required, the reflection influence of an ionospheric layer on shortwave sky wave signals is taken into full account, and the time differences of arrival of the signals at different receiving sites through different paths are used for positioning the shortwave radiation source; the method is disclosed according to actual needs, is particularly applied to regions where large antenna arrays cannot be erected, and is practically significant, and manpower and funds can be greatly saved.
Owner:国家无线电监测中心

Wavelength-tunable vertical cavity surface emitting laser and method of making same

A wavelength tunable semiconductor vertical cavity surface emitting laser which includes at least one active element including an active layer generating an optical gain by injection of a current, and at least one phase control element, and mirrors. The phase control element contains a modulator exhibiting a strong narrow optical absorption peak on a short wavelength side from the wavelength of the laser generation. The wavelength control is realized by using a position-dependent electro-optical effect. If a reverse bias is applied, the absorption maximum is shifted to longer wavelengths due to the Stark effect. If a forward bias is applied, a current is injected and results in the bleaching and reduction of the peak absorption. In both cases a strong modulation of the refractive index in the phase control element occurs. The effect tunes the wavelength of the cavity mode, and the sign and the value of the wavelength shift are defined by the position of the modulator. Two phase control cascades can be implemented into the laser, one of which shifts the wavelength of the emitted light to larger values, and the other shifts the wavelength of the emitted light to smaller values. A power equalizing element can be used in such laser allowing either to maintain the constant output power at different emission wavelengths or to realize an independent frequency and amplitude modulation. A photodetecting element can be implemented in the laser allowing calibration of the laser for all operations.
Owner:INNOLUME
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products