Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

100 results about "Subthreshold swing" patented technology

The subthreshold swing of a device is defined as the change in gate voltage which must be applied in order to create a one decade increase in the output current ". The other one is that the amount of gate voltage that is needed to bring down the sub threshold current by one decade . which of them is correct and in which context.

Two-dimensional semiconductor negative capacitance field-effect transistor and preparation method thereof

The invention discloses a two-dimensional semiconductor negative capacitance field-effect transistor and a preparation method thereof. The device structure sequentially comprises a substrate, a two-dimensional semiconductor, a metal source-drain electrode, a ferroelectric gate medium with a negative capacitance effect and a metal gate electrode from bottom to top. The preparation method comprises the steps of firstly, preparing the transition metal chalcogenide two-dimensional conductor on a substrate; secondly, preparing the metal source-drain electrode by employing an electron beam lithography technology and combining a stripping process; thirdly, preparing a ferroelectric thin film with the negative capacitance effect on the structure; and finally, preparing the metal gate electrode on the thin film to form ferroelectric-controlled two-dimensional semiconductor negative capacitance field-effect transistor. Different from other two-dimensional semiconductor negative capacitance field-effect device structures, the metal-ferroelectric-semiconductor structure has the advantages that a high-performance negative capacitance field-effect device can be achieved; and an electrical test result shows that the subthreshold swing of the device is far smaller than 60mV / dec, the Boltzmann limit is broken through, and the two-dimensional semiconductor negative capacitance field-effect device simultaneously has the characteristics of extremely low power consumption, high-speed turnover and the like.
Owner:SHANGHAI INST OF TECHNICAL PHYSICS - CHINESE ACAD OF SCI

Indium-doped N-type organic thin-film transistor and preparation method thereof

The invention discloses an indium-doped N-type organic thin-film transistor and a preparation method thereof. The N-type organic thin-film transistor has a top gate bottom contact structure. The preparation method comprises the following steps: firstly, preparing a layer of gold on a glass substrate through a mask plate to serve as a source electrode and a drain electrode; secondly preparing a layer of indium on a gold electrode to serve as a doped layer; thirdly forming an N-type organic semiconductor active layer on the surface of a sample subjected to electrode preparation by using a sol-gel method; fourthly spin-coating an active layer with a layer of dielectric material to serve as an insulating layer; and finally, preparing aluminum on the surface of the insulating layer through the mask plate to form a gate electrode. Compared with a traditional organic thin-film transistor, the organic thin-film transistor prepared by the method has the advantages that the switching ratio and the carrier mobility are obviously improved, and the subthreshold swing amplitude and the threshold voltage of a device are greatly reduced. The method improves the electrical property of the N-type organic thin-film transistor with the top gate bottom contact structure, and has the characteristics of low cost, simple process steps and wide applicability to the N-type organic thin-film transistor.
Owner:EAST CHINA NORMAL UNIV

Low off-state current tunneling field effect transistor

The invention discloses a low off-state current tunneling field effect transistor, comprises a source region, a channel region, a drain region and a first gate dielectric layer, wherein the channel region is provided with the first gate dielectric layer, the first gate dielectric layer is provided with a first grid, the source region is arranged under the channel region and close to the lower part of the channel region, the source region is provided with a source electrode, the drain region is arranged at one side of the channel region, a drain electrode is arranged at the right end of the drain region, an adjusting region is arranged between the channel region and the drain region, a transition region is arranged between the channel region and the adjusting region, a second gate dielectric layer is arranged on the adjusting region and is provided with a second grid, the first grid and the second grid are connected together through a lead to function as the grid of the whole field effect transistor, and an isolation region is arranged on the transition region. Since the adjusting region is introduced between the channel region and the drain region, the equivalent resistance of the adjusting region functions so that the low off-state current tunneling field effect transistor can obtain lower subthreshold swing and quiescent dissipation, thus improving the performance of the low off-state current tunneling field effect transistor.
Owner:XIANGTAN UNIV

Gate-all-around anti-irradiation MOS field effect transistor based on 65 nm technology

The present invention discloses a gate-all-around anti-irradiation MOS field effect transistor based on a 65 nm technology for mainly solving the problems of threshold voltage drift, subthreshold swing degeneration and off-state leakage current degeneration of a conventional 65 nm MOS field effect transistor under a total dose radiation environment. The gate-all-around anti-irradiation MOS field effect transistor based on the 65 nm technology comprises a P-type substrate (1) and an epitaxial layer (2) located on the substrate, a drain region (3) is arranged in the middle of the epitaxial layer, and a grid (4) is arranged above the epitaxial layer adjacent to the periphery of the drain region (3). Light doping source drain regions (5) are arranged in the epitaxial layer below the boundaries at the inner and outer sides of the grid, an area between the light doping source drain regions forms a channel, and a source region (6) is arranged in the epitaxial layer adjacent to the periphery of the grid. An isolating groove (7) is arranged in the epitaxial layer adjacent to the periphery of source region, and a grating ring, a source ring and an isolating groove ring sleeve structure surrounding the exterior of an active region orderly are formed. The gate-all-around anti-irradiation MOS field effect transistor based on the 65 nm technology of the present invention enables the device anti-total dose radiation capability to be improved, and can be used to manufacture a large-scale integrated circuit.
Owner:XIDIAN UNIV

Ferroelectric field effect transistor based on GeSn material, and preparation method for ferroelectric field effect transistor

The invention discloses a ferroelectric field effect transistor based on a GeSn material, and a preparation method for the ferroelectric field effect transistor, and solves problems that a conventional ferroelectric field effect transistor is small in conduction current and is larger in subthreshold swing. The ferroelectric field effect transistor comprises a substrate 1, a source electrode 2, a trench 3, a drain electrode 4, an insulating dielectric film 5, an internal grid electrode 6, a ferroelectric grid dielectric layer 7, and a grid electrode 8. The trench 3 is located at the center above the substrate 1, and the source electrode 2 and the drain electrode 4 are located at two sides of the trench 3. The insulating dielectric film 5, the internal grid electrode 6, the ferroelectric grid dielectric layer 7 and the grid electrode 8 are sequentially distributed above the trench 3 from the bottom to the top in a vertical manner. According to the invention, the GeSn material is introduced as the trench material of the transistor, thereby enabling the transistor to be able to obtain a smaller subthreshold swing and a higher switching speed at a low working voltage.
Owner:XIDIAN UNIV

Thin-film transistor, manufacturing method of thin-film transistor, array substrate and display device

The invention provides a thin-film transistor, a manufacturing method of the thin-film transistor, an array substrate and a display device. The manufacturing method of the thin-film transistor comprises the steps that a grid, a gate insulator, an active area, a source and a drain are formed on the substrate, the active area is made of a ZnON material, and nitrogen ions are implanted in the active area while the active area is formed, so that the subthreshold swing of the thin-film transistor is smaller than or equal to 0.5 mV/dec. According to the manufacturing method, as the nitrogen ions are implanted in the active area while the active area is formed, the concentration of the nitrogen ions, at the effective electricity conducting position, in the active area can be greatly improved, when the thin-film transistor works, nitrogen, lost due to the diffusion effect, in the active area can be supplemented sufficiently, the migration rate of nitrogen vacancy in the active area can be greatly increased, namely, the migration rate of current carriers in the active area is greatly increased, the subthreshold swing of the thin-film transistor is further reduced, and the semi-conductor property of the thin-film transistor is improved.
Owner:BOE TECH GRP CO LTD

SOI (silicon on insulator) substrate based ring-gate radiation-proof MOS (metal oxide semiconductor) field-effect transistor

The invention discloses an SOI (silicon on insulator) substrate based ring-gate radiation-proof MOS (metal oxide semiconductor) field-effect transistor. The field-effect transistor comprises an Si substrate (1), a buried oxide layer (2) located in the Si substrate (1) and an epitaxial layer (3) on the Si substrate (1), a drain region (5) is arranged in the middle of the epitaxial layer, a ring gate (4) is arranged over the epitaxial layer and next to the outer boundary of the drain region, lightly doped source drain regions (7) are arranged in the epitaxial layer under the edges of the inner and outer sides of the ring gate (4), and a region between the lightly doped source drain regions forms a channel; a ring source active region (6) is arranged in the epitaxial layer next to the outer edge of the gate, and a ring isolation channel (8) is arranged in the epitaxial layer adjacent to the periphery of the ring source active region (6) and is of a loop structure comprising a gate ring, a source ring and an isolation channel ring sequentially encircling the outside of the passive region. By the field-effect transistor, threshold voltage shift and subthreshold swing degradation are inhibited, total dose radiation performance tolerance of the device is enhanced, and the field-effect transistor is used for preparation of large-scale integrated circuits.
Owner:XIDIAN UNIV

TFT preparation method, TFT, array substrate and display device

ActiveCN109659235AImprove performanceWill not be affected by other electrical characteristic parametersTransistorSemiconductor/solid-state device manufacturingSubthreshold swingDisplay device
An embodiment of the invention discloses a TFT preparation method, a TFT, an array substrate and a display device. The TFT preparation method comprises the steps of: forming a buffer layer, a polysilicon layer, a gate insulating layer, a source layer, a drain layer and a gate layer on a substrate, wherein the polysilicon layer is formed on the buffer layer, the source layer and the drain layer areformed on both sides of the polysilicon layer, and the gate insulating layer is formed on the polysilicon layer, the source layer and the drain layer; and performing primary ion implantation on the polysilicon layer after the buffer layer and the polysilicon layer are formed on the substrate and before the gate insulating layer is formed on the substrate, so as to adjust a subthreshold swing to be not lower than a preset threshold value and enable a peak value of the implanted ion concentration falls in the buffer layer under the polysilicon layer. According to the TFT preparation method, adverse effect on other electrical characteristic parameters of the TFT cannot be caused under the condition of adjusting the subthreshold swing of the TFT, and the overall product performance of the TFTis improved.
Owner:WUHAN CHINA STAR OPTOELECTRONICS SEMICON DISPLAY TECH CO LTD

Source drain variable-resistance rectangular grid controlled U-shaped channel bidirectional transistor and production method thereof

The invention relates to a source drain variable-resistance rectangular grid controlled U-shaped channel bidirectional transistor and a production method thereof. The element is provided with a rectangular grid electrode, has a transversely symmetrical structural feature, has high grid control capacity and can control a metal source drain interchangeable region as a source region or a drain regionthrough adjustment of source drain interchangeable electrode voltage, and the direction of a tunneling current is changed. The element has the advantages of low static power consumption, small reverse leakage current, high grid control capacity, low subthreshold swing and realization of a bidirectional switch function. Compared with a common MOSFETs-type element, a better switch characteristic isachieved by means of a tunneling effect; compared with a common tunneling field effect transistor, the bidirectional transistor has a source drain interchangeable bidirectional symmetrical switch characteristic; compared with a Schottky barrier transistor, the bidirectional transistor has a better switch characteristic; it is unnecessary to conduct blending in the source and drain regions, a Schottky barrier is easy to form, the rectangular grid electrode can better control the source and drain regions, and thus the bidirectional transistor is suitable for application and popularization.
Owner:山东光岳九州半导体科技有限公司

Ferroelectric/piezoelectric field effect transistor and preparation method thereof

The invention provides a ferroelectric /piezoelectric field effect transistor and a preparation method thereof. The iron/piezoelectric field effect transistor comprises a substrate, a source electrode, a drain electrode and a gate electrode. The gate electrode comprises silicon dioxide, a high dielectric layer, a piezoelectric material layer, a titanium nitride layer, a ferroelectric material layer and a tantalum nitride layer, which are sequentially stacked from bottom to top. The preparation method comprises the following steps: providing a silicon substrate, and doping P-type ions into thesilicon substrate to form a substrate; forming a source electrode and a drain electrode at two sides of the substrate; sequentially forming the silicon dioxide layer and the high dielectric layer between the source electrode and the drain electrode above the substrate; and sequentially forming the piezoelectric material layer, the titanium nitride layer, the ferroelectric material layer and the tantalum nitride layer on the high dielectric layer. Based on the field effect transistor, the ferroelectric material and the piezoelectric material are introduced into the gate electrode, and the negative capacitance effect of the ferroelectric material and the electrostrictive effect of the piezoelectric material are used for jointly achieving the voltage amplification function. The working voltage of the device is reduced, the subthreshold swing is reduced, the on/off speed of the device is improved, and the working power consumption is further reduced.
Owner:SHANGHAI HUALI INTEGRATED CIRCUTE MFG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products