Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

80results about How to "Quick steps" patented technology

System and method for the lossless progressive streaming of images over a communication network

A lossless image streaming system for the transmission of images over a communication network. The system eliminates the necessity to store a compressed version of the original image, by losslessly streaming ROI data using the original stored image. The imaging system also avoids the computationally intensive task of compression of the full image. When a user wishes to interact with a remote image, the imaging client generates and sends a ROI request list to the imaging server. The request list can be ordered according to the particular progressive mode selected (e.g., progressive by quality, resolution or spatial order). The imaging server performs a fast preprocessing step in near real time after which it can respond to any ROI requests in near real time. When a ROI request arrives at the server, a sophisticated progressive image encoding algorithm is performed, but not for the full image. Instead, the encoding algorithm is performed only for the ROI. Since the size of the ROI is bounded by the size and resolution of the viewing device at the client and not by the size of the image, only a small portion of the full progressive coding computation is performed for a local area of the original image.
Owner:IDX INVESTMENT CORP

Pharmaceutical proteins, human therapeutics, human serum albumin, insulin, native cholera toxic b submitted on transgenic plastids

Transgenic chloroplast technology could provide a viable solution to the production of Insulin-like Growth Factor I (IGF-I), Human Serum Albumin (HSA), or interferons (IFN) because of hyper-expression capabilities, ability to fold and process eukaryotic proteins with disulfide bridges (thereby eliminating the need for expensive post-purification processing). Tobacco is an ideal choice because of its large biomass, ease of scale-up (million seeds per plant), genetic manipulation and impending need to explore alternate uses for this hazardous crop. Therefore, all three human proteins will be expressed as follows: a) Develop recombinant DNA vectors for enhanced expression via tobacco chloroplast genomes b) generate transgenic plants c) characterize transgenic expression of proteins or fusion proteins using molecular and biochemical methods d) large scale purification of therapeutic proteins from transgenic tobacco and comparison of current purification/processing methods in E. coli or yeast e) Characterization and comparison of therapeutic proteins (yield, purity, functionality) produced in yeast or E. coli with transgenic tobacco f) animal testing and pre-clinical trials for effectiveness of the therapeutic proteins. Mass production of affordable vaccines can be achieved by genetically engineering plants to produce recombinant proteins that are candidate vaccine antigens. The B subunits of Enteroxigenic E. coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are examples of such antigens. When the native LTB gene was expressed via the tobacco nuclear genome, LTB accumulated at levels less than 0.01% of the total soluble leaf protein. Production of effective levels of LTB in plants, required extensive codon modification. Amplification of an unmodified CTB coding sequence in chloroplasts, up to 10,000 copies per cell, resulted in the accumulation of up to 4.1% of total soluble tobacco leaf protein as oligomers (about 410 fold higher expression levels than that of the unmodified LTB gene). PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that chloroplast synthesized CTB assembled into oligomers and was antigenically identical to purified native CTB. Also, GM1,-ganglioside binding assays confirmed that chloroplast synthesized CTB binds to the intestinal membrane receptor of cholera toxin, indicating correct folding and disulfide bond formation within the chloroplast. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed. The introduced gene was stably inherited in the subsequent generation as confirmed by PCR and Southern blot analyses. Incrased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant based oral vaccines and fusion proteins with CTB needing oral administration a much more practical approach.
Owner:AUBURN UNIV +1

Method and Group for the Compression Molding of Preforms for Containers in Polymeric Material

The preform is formed by an upper neck which maintains unchanged its form in the final object and a hollow body, joined to the neck. The method foresees the insertion, within a matrix cavity, of a metered body of polymeric material whose mass is metered according to a reference value, and the subsequent pressure insertion of a punch within the matrix cavity until it closes the mold's molding chamber, the punch conferring the shape to the inner surface of the preform and the matrix having an inner surface which confers the shape to the outer surface of the preform. According to the invention, in the molding of the preform, the error of the mass of the metered body with respect to the reference value is distributed in the hollow body, which undergoes a subsequent hot deformation until it achieves the final shape. In the mold, the matrix comprises at least one deformable wall ( 31 ) whose inner surface defines at least part of the inner surface of the matrix part intended to give form to the hollow body of the preform, said deformable wall ( 31 ) having, at least in part, a relatively thin thickness which permits it to be elastically deformed under the pressure of the polymeric material in the final preform molding step, thereby varying the thickness of the hollow body.
Owner:SACMI COOP MECCANICI IMOLA S C R L

Method and group for the compression molding of preforms for containers in polymeric material

The preform is formed by an upper neck which maintains unchanged its form in the final object and a hollow body, joined to the neck. The method foresees the insertion, within a matrix cavity, of a metered body of polymeric material whose mass is metered according to a reference value, and the subsequent pressure insertion of a punch within the matrix cavity until it closes the mold's molding chamber, the punch conferring the shape to the inner surface of the preform and the matrix having an inner surface which confers the shape to the outer surface of the preform. According to the invention, in the molding of the preform, the error of the mass of the metered body with respect to the reference value is distributed in the hollow body, which undergoes a subsequent hot deformation until it achieves the final shape. In the mold, the matrix comprises at least one deformable wall (31) whose inner surface defines at least part of the inner surface of the matrix part intended to give form to the hollow body of the preform, said deformable wall (31) having, at least in part, a relatively thin thickness which permits it to be elastically deformed under the pressure of the polymeric material in the final preform molding step, thereby varying the thickness of the hollow body.
Owner:SACMI COOP MECCANICI IMOLA SOC COOP A R L

Recessed light fixture

A recessed light fixture mountable to a panel. The panel defines a panel aperture extending therethrough. The recessed light fixture includes a housing, the housing defining an end wall and a side wall extending from the end wall. The side wall defines a side wall edge substantially opposed to the end wall. The housing further defines a housing flange extending substantially peripherally and outwardly from the side wall substantially adjacent the side wall edge. A retaining clip is mounted to the housing. The retaining clip includes a clip mounting element mounted to the housing. A clip body is also included in the retaining clip and defines a retaining flange. The retaining flange is located outside of the housing in a substantially parallel and spaced apart relationship relatively to the housing flange when the retaining clip is mounted to the housing in an operative configuration. An actuator is operatively coupled to the clip mounting element and to the clip body for moving the clip body and the clip mounting element relatively to each other so as to vary a retaining flange-to-housing flange distance between the retaining flange and the housing flange; When the housing is mounted through the panel aperture with the panel positioned between the housing and retaining flanges, using the actuator to move the clip body relatively to the clip mounting element moves the retaining flange relatively to the housing flange to allow the attachment of the light fixture to the panel by pinching the panel between the housing flange and the retaining flange.
Owner:BEDARD SYLVAIN

Recessed light fixture

A recessed light fixture mountable to a panel. The panel defines a panel aperture extending therethrough. The recessed light fixture includes a housing, the housing defining an end wall and a side wall extending from the end wall. The side wall defines a side wall edge substantially opposed to the end wall. The housing further defines a housing flange extending substantially peripherally and outwardly from the side wall substantially adjacent the side wall edge. A retaining clip is mounted to the housing. The retaining clip includes a clip mounting element mounted to the housing. A clip body is also included in the retaining clip and defines a retaining flange. The retaining flange is located outside of the housing in a substantially parallel and spaced apart relationship relatively to the housing flange when the retaining clip is mounted to the housing in an operative configuration. An actuator is operatively coupled to the clip mounting element and to the clip body for moving the clip body and the clip mounting element relatively to each other so as to vary a retaining flange-to-housing flange distance between the retaining flange and the housing flange; When the housing is mounted through the panel aperture with the panel positioned between the housing and retaining flanges, using the actuator to move the clip body relatively to the clip mounting element moves the retaining flange relatively to the housing flange to allow the attachment of the light fixture to the panel by pinching the panel between the housing flange and the retaining flange.
Owner:BEDARD SYLVAIN

Pharmaceutical proteins, human therapeutics, human serum albumin insulin, native cholera toxic B submitted on transgenic plastids

Transgenic chloroplast technology could provide a viable solution to the production of Insulin-like Growth Factor I (IGF-I), Human Serum Albumin (HSA), or interferons (IFN) because of hyper-expression capabilities, ability to fold and process eukaryotic proteins with disulfide bridges (thereby eliminating the need for expensive post-purification processing). Tobacco is an ideal choice because of its large biomass, ease of scale-up (million seeds per plant), genetic manipulation and impending need to explore alternate uses for this hazardous crop. Therefore, all three human proteins will be expressed as follows: a) Develop recombinant DNA vectors for enhanced expression via tobacco chloroplast genomes b) generate transgenic plants c) characterize transgenic expression of proteins or fusion proteins using molecular and biochemical methods d) large scale purification of therapeutic proteins from transgenic tobacco and comparison of current purification / processing methods in E. coli or yeast e) Characterization and comparison of therapeutic proteins (yield, purity, functionality) produced in yeast or E. coli with transgenic tobacco f) animal testing and pre-clinical trials for effectiveness of the therapeutic proteins. Mass production of affordable vaccines can be achieved by genetically engineering plants to produce recombinant proteins that are candidate vaccine antigens. The B subunits of Enteroxigenic E. coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are examples of such antigens. When the native LTB gene was expressed via the tobacco nuclear genome, LTB accumulated at levels less than 0.01% of the total soluble leaf protein. Production of effective levels of LTB in plants, required extensive codon modification. Amplification of an unmodified CTB coding sequence in chloroplasts, up to 10,000 copies per cell, resulted in the accumulation of up to 4.1% of total soluble tobacco leaf protein as oligomers (about 410 fold higher expression levels than that of the unmodified LTB gene). PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that chloroplast synthesized CTB assembled into oligomers and was antigenically identical to purified native CTB. Also, GM1-ganglioside binding assays confirmed that chloroplast synthesized CTB binds to the intestinal membrane receptor of cholera toxin, indicating correct folding and disulfide bond formation within the chloroplast. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed. The introduced gene was stably inherited in the subsequent generation as confirmed by PCR and Southern blot analyses. Incrased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant based oral vaccines and fusion proteins with CTB needing oral administration a much more practical approach.
Owner:DANIELL HENRY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products