Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6270 results about "Di-isocyanate" patented technology

Bioabsorbable and biocompatible polyurethanes and polyamides for medical devices

Absorbable polyurethanes, polyamides and polyester urethanes prepared from at least one compound selected from:
or the diamines and diisocyanates thereof, wherein each X represents a member independently selected from —CH2COO— (glycolic acid moiety), —CH(CH3)COO— (lactic acid moiety), —CH2CH2OCH2COO— (dioxanone), —CH2CH2CH2CH2CH2COO— (caprolactone moiety), —(CH2)yCOO— where y is one of the numbers 2, 3, 4 or 6-24 inclusive, and —(CH2CH2O)z′CH2COO— where z′ is an integer between 2 and 24, inclusive; each Y represents a member independently selected from —COCH2O— (glycolic ester moiety), —COCH(CH3)O— (lactic ester moiety), —COCH2OCH2CH2O— (dioxanone ester), —COCH2CH2CH2CH2CH2O— (caprolactone ester), —CO(CH2)mO— where m is an integer between 2, 3, 4 or 6-24 inclusive, —COCH2O(CH2CH2O)n— where n is an integer between 2 and 24, inclusive; R′ is hydrogen, benzyl or an alkyl group, the alkyl group being either straight-chained or branched; p is an integer between 1 and 4, inclusive; and Rn represents one or more members selected from H, alkoxy, benzyloxy, aldehyde, halogen, carboxylic acid and —NO2, which is attached directly to an aromatic ring or attached through an aliphatic chain. Absorbable polymers prepared from these compounds are useful for drug delivery, tissue engineering, tissue adhesives, adhesion prevention and other implantable medical devices.
Owner:BEZWADA BIOMEDICAL LLC

Preparation method and application of modified polyurethane aqueous dispersions of polyisocyanate curing agents

The invention discloses a preparation method and application of modified polyurethane aqueous dispersions of polyisocyanate curing agents. The preparation method comprises the following steps of: carrying out prepolymerization reaction by using polyester polyol, vulcabond monomer and a polyisocyanate curing agent; reacting with a hydrophilic chain-extending agent and a micro-molecule chain-extending agent to obtain polyurethane prepolymer containing hydrophilic groups (carboxyl or sulfonic groups) and isocyanate(NCO)-terminated groups; neutralizing the polymer into salt, and then dispersing the salt into water; and preparing the modified polyurethane aqueous dispersions of the polyisocyanate curing agents by the chain extending of a polyamine chain-extending agent. The modified polyurethane aqueous dispersions of the polyisocyanate curing agents have self-crosslinking function at room temperature, and the self-crosslinking density is over 85%. Compared with non-modified polyurethane aqueous dispersions prepared under the same condition, the modified polyurethane aqueous dispersions have superior film forming property, water resistance, alcohol resistance, pollution resistance, cold resistance, dry/wet rubbing resistance and chemical solvent resistance; and coating films have especially high drying speed, high hardness increment speed and high final hardness.
Owner:SOUTH CHINA UNIV OF TECH

Process for the manufacturing of an improved core for decorative laminates and a decorative laminate obtained by the process

A process for the manufacturing of a core forming a carrying structure for decorative laminates. The core comprises particles of cured, and optionally foamed, rigid, polyurethane, polyisocyanurate and / or phenolic resin. The particles are bonded to each other in a pressing procedure with a bonding agent comprising an adhesive such as a polymerizing monomer.i) The particles are achieved by grinding cured, and optionally foamed, rigid, polyurethane, polyisocyanurate and / or phenolic resin so that it passes through a 2 mm screen, preferably a 1 mm screen,ii) 100 parts per weight of particles is mixed with 1-100 parts per weight of fiber, the fiber additive having an average length in the range 1-15 mm.iii) The particle-fiber mixture is allowed to absorb a selected amount of water, the amount of water being in the range 1-15% by weight, The water is either added at any stage before the adding of bonding agent, and / or being used as a solvent in the bonding agent, and that,iv) 85 parts per weight of the particle mixture is mixed with 2-15 parts per weight of a bonding agent, the bonding agent selected from the group consisting of,a) A mixture of polyols, such as polyester or polyether, crude methylene diphenyl diisocyanate and possibly a small amount of blowing agent in a ratio forming a polymeric resin with a density in the range 600-1400 kg / m3.b) A formaldehyde based resin such as phenol-formaldehyde resin, urea-formaldehyde resin, melamine-urea-formaldehyde resin, melamine-urea-phenol-formaldehyde resin or phenol-resorcinol-formaldehyde resin, orc) Polyvinyl acetate resin.v)The mixture is applied between the belts of the continuos belt press or the press plates of a static press, optionally with at least one intermediate carrier web, the belts or press plates allowing a mainly uniform and specified material thickness to form. A slightly porous and preconditioned core with a selected water content in the range 0.8-12% is hereby achieved. The invention also relates to a decorative laminate achieved through the process.
Owner:PERGO

High solid content latent curing polyurethane acroleic acid hybrid emulsion

The invention relates to a method for preparing a high solid content latent cured polyurethane acrylic acid heterozygous latex and an application thereof. The preparation method comprises the following steps: pre-polymerizing polyester polyalcohol, hydrophilic chain extender and diisocyanate monomer to obtain the polyurethane prepolymer containing a hydrophilic group (carboxyl or sulfo group) and a terminal NCO group; then, neutralizing the polymer into salt and dispersing the salt in water to prepare the polyurethane water dispersoid; finally, using the dispersoid as macro molecular emulsifying agent and reactant to emulsify and disperse the acrylic ester monomer, initiating the polymerization by heating, dropping initiator to perform the latex polymerization, and regulating the pH of the latex by adding a latent curing agent to obtain the high solid content latent cured polyurethane acrylic acid heterozygous latex. The high solid content latent cured polyurethane acrylic acid heterozygous latex has a solid content of above 45%; the storage of the high solid content latent cured polyurethane acrylic acid heterozygous latex is stable; and high hardness film coating can be formed at the room temperature. Compared with acrylic acid latex and polyurethane latex, the high solid content latent cured polyurethane acrylic acid heterozygous latex has better film forming performance, water resistance, alcohol resistance, pollution resistance, dry/wet cleaning resistance and chemical solvent resistance, as well as high hardness.
Owner:SOUTH CHINA UNIV OF TECH

High-strength room-temperature self-repairing polyurethane elastomer based on multiple dynamic reversible effects as well as preparation and application of high-strength room-temperature self-repairing polyurethane elastomer

The invention belongs to the technical field of self-repairing elastomer materials, and discloses a high-strength room-temperature self-repairing polyurethane elastomer based on multiple dynamic reversible effects as well as preparation and application thereof. A preparation method comprises the following steps: 1) reacting a dihydric alcohol with a diisocyanate under the action of a catalyst to obtain a prepolymer; wherein the dihydric alcohol is a mixture of more than one from a polyether glycol and a polysiloxane glycol; 2) reacting a dicarboxylic acid chain extender with the prepolymer toobtain an oligomer; adding a diamine chain extender, continuously reacting, and carrying out subsequent treatment to obtain polyurethane; wherein the dicarboxylic acid chain extender and the diamine chain extender are collectively called as chain extenders, and the chain extenders contain disulfide bonds and pyridine groups; 3) in an organic solvent, reacting polyurethane with a metal salt cross-linking agent, and removing the solvent to obtain the high-strength room-temperature self-repairing polyurethane elastomer. The preparation method is simple and mild in condition, and the prepared polyurethane elastomer is excellent in mechanical property and high in self-repairing efficiency and is applied to a flexible substrate materials, wearable equipment and intelligent protective coating.
Owner:SOUTH CHINA UNIV OF TECH

Dihydric alcohol containing acylhydrazone bond, dihydric alcohol containing acylhydrazone bond and disulfide bond, self-repairing polyurethane elastomer and preparation method thereof

The invention provides dihydric alcohol containing an acylhydrazone bond, dihydric alcohol containing an acylhydrazone bond and a disulfide bond, a self-repairing polyurethane elastomer and a preparation method thereof. The polyurethane elastomer is prepared from the dihydric alcohol containing the acylhydrazone bond or the dihydric alcohol containing the acylhydrazone bond and the disulfide bond and a polyurethane prepolymer. The dihydric alcohol containing the acylhydrazone bond is prepared from a dihydrazide monomer and hydroxy aldehyde. The dihydric alcohol containing the acylhydrazone bond and the disulfide bond is prepared from a dithio lipid monomer, hydrazine hydrate and hydroxy aldehyde. The polyurethane prepolymer is prepared from a polyester or polyether polyol monomer and diisocyanate. After the self-repairing polyurethane elastomer is mechanically damaged, the acylhydrazone bond or the disulfide bond on a crosslinked polymer molecular chain achieves material self-repairing through dynamic exchange reaction. The self-repairing crosslinked polyurethane elastomer material is simple in preparation, can achieve self repairing at room temperature, is high in repairing capability, short in repairing time and capable achieving many times of self repairing and has better mechanical properties.
Owner:QINGDAO UNIV OF SCI & TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products