Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

135 results about "Beam wave" patented technology

Coaxial-extraction long-pulse relativistic backward-wave oscillator

ActiveCN103137399AHigh Q valueOvercome the impact on work efficiencyTravelling-wave tubesTransit-tube collectorsWave structureMicrowave
The invention relates to a microwave component in the technical field of high power microwave and provides a coaxial-extraction long-pulse relativistic backward-wave oscillator. The coaxial-extraction long-pulse relativistic backward-wave oscillator comprises a cathode base, a cathode, an anode outer cylinder, a cut-off neck, a slow wave structure, a tapered waveguide, an output waveguide, a solenoidal field, a coaxial-extraction structure and a front-arranged reflection cavity. The coaxial-extraction structure is a cylinder. The front-arranged reflection cavity is disposed between the cut-off neck and the slow wave structure. According to the coaxial-extraction long-pulse relativistic backward-wave oscillator, a cylinder is adopted as the coaxial-extraction structure, and therefore the defect that the coaxial-extraction structure with a groove generates plasma is overcome, and meanwhile in the electromagnetic wave mode, function transformation can be carried out and installation can be achieved conveniently. The front-arranged reflection cavity is utilized to replace the cut-off neck so that the resonance characteristic of the front-arranged reflection cavity can be utilized to achieve the effect of the cut-off neck, electron beam scraping or electron beam bombardment of the front-arranged reflection cavity can be avoided, and premodulation of electron beams emitted from the cathode also can be carried out. Therefore, the coaxial-extraction long-pulse relativistic backward-wave oscillator is beneficial for subsequent beam wave interaction and improves power conversion efficiency of the component.
Owner:NAT UNIV OF DEFENSE TECH

Relativistic backward wave oscillator for generating linearly polarized TE11 mode directly

The invention, which belongs to the maser field, directly relates to a relativistic backward wave oscillator for generating a linearly polarized TE11 mode directly. The relativistic backward wave oscillator comprises an arc cathode, a reflector, an angular partition slow wave structure, an output waveguide and a magnetic field coil. The arc cathode is arranged at the front end of the relativistic backward wave oscillator; the reflector, the angular partition slow wave structure, and the output waveguide are arranged at the rear side of the arc cathode successively; and the magnetic field coil is installed at the periphery. According to the invention, with the nonaxisymmetrical arc cathode and the angular partition slow wave structure, the TE11 mode is excited directly. The reflector employs the dual-premodulation-cavity unit preferably and is used for carrying out premodulation on an arc relativistic electron beam and leaking the part of TE11 mode to enter the arc cathode zone, so that certain premodulation of the electron beam at the arc cathode zone is realized and thus the beam wave conversion efficiency is improved. Moreover, the oscillator has advantages of simple structure and high conversion efficiency; and the linearly polarized TE11 mode can be generated directly.
Owner:NORTHWEST INST OF NUCLEAR TECH

Repetition-frequency low-magnetic-field axial C-waveband high-power microwave device

ActiveCN106098510AImprove beam conversion efficiencyKlystronsWave structureVacuum pumping
The invention discloses a repetition-frequency low-magnetic-field axial C-waveband high-power microwave device. The device comprises an anode, a cathode, a guiding magnetic field generator, slow wave structures and a coaxial internal conductor, the anode is internally provided with an emission area and a beam wave interaction area, the cathode is arranged in the emission area, the slow wave structures and the coaxial internal conductor are arranged in the beam wave interaction area of the anode, the cathode is coaxial with the coaxial internal conductor, the slow wave structures are fixed to the inner side of the anode and arranged in the periphery of the coaxial internal conductor, a vacuum cavity is formed by vacuum pumping in the repetition-frequency low-magnetic-field axial C-waveband high-power microwave device, and the vacuum degree of the vacuum cavity does not exceed 10mPa. A baffle plate is arranged between the emission area and the beam wave interaction area. The baffle plate is provided with an annular inlet for guiding high-current electron beams generated by the cathode into the beam wave interaction area, and the diameter of the annular inlet is consistent with that of the cathode. The device is characterized by being capable of generating C-waveband high-power microwaves in repetition frequency and high in the beam wave conversion efficiency.
Owner:INST OF APPLIED ELECTRONICS CHINA ACAD OF ENG PHYSICS

Cross-band dual-frequency relativistic backward-wave oscillator

The invention discloses a cross-band dual-frequency relativistic backward-wave oscillator. The cross-band dual-frequency relativistic backward-wave oscillator comprises a high-frequency microwave device and a low-frequency microwave device, which are coaxially arranged in sequence, wherein the high-frequency microwave device comprises a high-frequency relativistic backward-wave oscillator; a cathode and a high-frequency device beam wave interaction area are coaxially arranged in the high-frequency relativistic backward-wave oscillator in sequence; a first guide magnet is arranged outside the high-frequency relativistic backward-wave oscillator; the low-frequency microwave device comprises a low-frequency relativistic backward-wave oscillator; a low-frequency device beam wave interaction area is arranged in the low-frequency relativistic backward-wave oscillator; the low-frequency relativistic backward-wave oscillator is coaxially connected with the tail end of the high-frequency relativistic backward-wave oscillator; and a second guide magnet is arranged outside the low-frequency relativistic backward-wave oscillator. By the circular waveguide critical wavelength principle in the relativistic backward-wave oscillator, the same intense annular electron beam passes through magnetic field guide structures with different magnetic field intensity distributions, successively passes through the tandem high-frequency microwave device and low-frequency microwave device, and generates a high-frequency high-power microwave and a low-frequency high-power microwave respectively.
Owner:INST OF APPLIED ELECTRONICS CHINA ACAD OF ENG PHYSICS

Comb-shaped slow-wave structure for multi-band electron beam channel

The invention discloses a comb-shaped slow-wave structure for a multi-band electron beam channel. The comb-shaped slow-wave structure for the multi-band electron beam channel comprises a rectangular wave guide wall of which the two ends are open; double rows of comb-shaped teeth are arranged on the inner walls of the upper end surface and the lower end surface of the rectangular wave guide wall in a staggered way; a plurality of insertion pieces are inserted into the rectangular wave guide wall at equal intervals; XYZ three-dimensional coordinates are established by taking the lower-left corner of the front end surface of the rectangular wave guide wall of which the two ends are open as an original point; the direction which is upwards vertical to the original point is the Z-axis; the direction which is leftwards horizontally is the Y-axis; the direction which is backwards horizontally is the X-axis; the teeth are at equal intervals and are parallel to the YZ plane; and the insertion pieces are parallel to the XZ plane. The comb-shaped slow-wave structure for the multi-band electron beam channel has a simple main structure, is easy to machine and is compatible with the modern micro electronic mechanical system (MEMS) technology; a transverse edge effect of the comb teeth can be ignored; the working frequency band is widened obviously; the beam-wave interaction efficiency is high; the working current is improved; the output power is increased; and the comb-shaped slow-wave structure is a novel slow-wave structure which extremely has application potential.
Owner:HEFEI UNIV OF TECH

Cathode-adjustable single anode magnetic control electron gun

A cathode-adjustable single anode magnetic control electron gun belongs to a single anode magnetic control electron gun that is used in conjunction with a vacuum gyrotron, and comprises an electron gun casing, a base, an electric heating wire component, a support cylinder, a regulating mechanism assembly, an electron gun cathode, a fixed annular plate, an anode and a retainer ring, wherein, the electric heating wire component comprises an electric heating wire, an electric heating wire sleeve and insulating fillers, and the electric heating wire sleeve is provided with a ring-shaped scale section, a threaded section and a guiding plane surface; the regulating mechanism assembly is arranged between the electric heating wire sleeve and the support cylinder thereof, and comprises an adjusting screw nut; in addition, the cathode-adjustable single anode magnetic control electron gun can adjust the distance between the cathode and anode according to the operating condition, the transverse to longitudinal velocity ratio of an obtained electron beam is greater than 1.0, and the longitudinal velocity spread is less than 2 percent. Therefore, the influence caused by assembly error and overheating deformation or great current and voltage variation of the electron gun can be overcome effectively, and the cathode-adjustable single anode magnetic control electron gun is characterized in that working current and voltage capable of adapting to wider range can be achieved, the discreteness of the electronic longitudinal velocity is low, the performance of the electron beam is excellent, and the power and the efficiency for later beam-wave interaction of the gyrotron can be improved and so on.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Preparation method of crystalline silicon solar cell

The invention discloses a preparation method of a crystalline silicon solar cell. In the passivation process technology of the back surface of a silicon wafer, because aluminum oxide has constant negative charge, the composition of the back surface can be lowered, and the same time, because silicon nitride in rich in hydrogen, passivation can be realized effectively, and in addition, the passivation overlapping layers of aluminum oxide and silicon nitride act as a back reflector, the absorption of long beam waves can be improved greatly, the passivation overlapping layers are positioned between a back surface electrode and the silicon wafer, the warping degree of the crystalline silicon solar cell can be lowered greatly, and the influence on the lifetime of a minority carrier in the silicon wafer can be lowered effectively; and when the back surface electrode is manufactured, because the passivation overlapping layers for the corrosion depth in the corrosion region is just removed, the problem that the back surface electrode and the silicon wafer have less possibility of forming favorable ohmic contact due to the back surface passivation of the silicon wafer can be solved effectively, at the same time, a dense network structure is formed by connecting all the adjacent electric conducting materials by utilizing a silver wire, and the network structure is especially favorable for the collection and conduction of back surface current carriers of the silicon wafer.
Owner:苏元周

Multi-electron-beam inductive output tube

A multi-electron-beam inductive output tube is composed of three portions, wherein the first portion is an input system composed of a grid-control multi-electron-beam electronic gun and an input cavity, and feed-in microwave signals are fed into the input cavity through a coaxial input cable; the second portion is an output cavity, a reentry-type cylindrical resonant cavity is adopted in the output cavity, a clearance of the output cavity is composed of a gap between two machining drifting channels in the axial direction of cylindrical metal, direct-current energy of multiple electron beams is interchanged with energy generated by a high-frequency field at the clearance of the output cavity, and transformational high-frequency microwaves are output through a coaxial output cable; the third portion is a collector which is used for collecting energy of the electron beams finishing beam-wave interaction. The multi-electron-beam inductive output tube is simple and practical, has the advantages of being easy to machine, low in technology processing difficulty and the like, and also has the advantages of being low in working voltage, high in efficiency, wide in frequency band, high in gain, long in service life, low in operating and maintaining cost and the like at the same power level compared with a traditional inductive output tube.
Owner:INST OF ELECTRONICS CHINESE ACAD OF SCI

Double-frequency relativistic backward-wave oscillator capable of directly outputting TE11-mode electromagnetic waves

The invention relates to the technical field of high-power microwave devices, and discloses a double-frequency relativistic backward-wave oscillator capable of directly outputting TE11-mode electromagnetic waves. The oscillator comprises a Bragg reflector, a first slow wave structure and a second slow wave structure, wherein the Bragg reflector, the first slow wave structure and the second slow wave structure are sequentially set in a coaxial manner. The interior of the Bragg reflector is sequentially provided with an electron beam emission gun and a reflection work cavity. The first slow wave structure comprises a slow wave structure employing a periodic ripple design, and the interior of the slow wave structure is provided with a slow wave structure beam-wave interaction cavity. The second slow wave structure comprises a slow wave structure employing a periodic ripple design, and the interior of the slow wave structure is provided with a slow wave structure beam-wave interaction cavity. According to the invention, an electron beam sequentially passes through two coaxial slow wave structures, and performs the beam-wave interaction with the slow wave structures to generate a double-frequency TE11-mode electromagnetic wave traveling in an opposite direction. The double-frequency TE11-mode electromagnetic wave traveling in the opposite direction is converted into a TE11-mode electromagnetic wave propagating forwards through the Bragg reflector, and the electromagnetic wave with the beat effect is outputted at a radiation end.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Gradually-amplified slow-wave-structure microwave oscillator outputting high power microwave

The invention discloses a gradually-amplified slow-wave-structure microwave oscillator outputting high power microwaves. A slow-wave structure of the microwave oscillator is distributed in a conical shape. The microwave oscillator comprises a guide magnet, wherein the guide magnet comprises a cylinder hollow cavity, and a cathode, the slow-wave structure and a coaxial inner conductor are arranged inside the guide magnet coaxially. The slow-wave structure of the microwave oscillator disclosed by the invention is gradually amplified and distributed in a conical shape, an electron beam is guided into an interaction chamber of the slow-wave structure gradually-amplified high power microwave oscillator from the cathode through axial and radial distribution of a guide magnetic field; an intense electron beam is closely adhered to the surface of the slow-wave structure for transmission under the constraint of the guide magnetic field; and the coaxial inner conductor in a microwave output cavity enhances beam-wave interaction and increases microwave output efficiency, and can be used for adjusting size of an output window, thereby ensuring compactness of the microwave output structure, adjusting size structure of the coaxial inner conductor properly, and achieving high-efficiency microwave output under low magnetic field guidance.
Owner:INST OF APPLIED ELECTRONICS CHINA ACAD OF ENG PHYSICS

Far-field detection method for near-field evanescent beam wave filed transmittance transmission characteristic function aiming at ultra-diffraction structural material

The invention provides a far-field detection method for a near-field evanescent beam wave filed transmittance transmission characteristic function aiming at an ultra-diffraction structural material. According to the method, adopted devices comprise a transparent substrate layer, an exciting grating layer, ultra-diffraction structural material layers and a detecting grating layer from top to bottom, wherein incident lights from the back surface of the transparent substrate layer are excited with evanescent wave levels after passing the exciting grating layer, the ultra-diffraction structural material layers can perform spatial frequency high-pass filtering of a horizontal wave vector on the evanescent wave levels so as to form an evanescent beam wave filed with the specific near-field transmission of the horizontal wave vector, the detecting grating layer can convert the evanescent wave levels to be transmitted wave levels to be transmitted to a far field, and detection light corresponding to evanescent wave components one by one can be received at the far field finally. The method can be used in the far-field detection of the near-field evanescent beam wave filed transmittance transmission characteristic function of the ultra-diffraction structural material, so as to realize the horizontal wave vector near-field distribution of the evanescent wave filed as well as the qualitative analysis and quantitative detection of the corresponding wave vector energy transmittance of the evanescent wave filed.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI

Lagrange Gaussian beam Gouy phase parameter measuring method

The invention relates to a Lagrange Gaussian beam Gouy phase parameter measuring method. In the prior art, an optical path structure is complicated, restriction from optical beam coherence is obtained and the measurement in an optical system with high sensitivity and high numerical aperture cannot be realized. According to the invention, the method comprises the following steps of: carrying out sector light shielding modulation on beam wave front by using wave front amplitude modulation technology of the Lagrange Gaussian beam; and selecting beam radial parameters as zero, wherein a circular ring shaped light spot with a gap is formed after beams are gathered; detecting the circular ring shaped light spot with the gap by using a near field optical technology, wherein azimuth angle parameter corresponding to the center of the gap is fundamental mode beam Gouy phase; and obtaining the Gouy phase of any Lagrange Gaussian beam in different spreading positions through simple calculation. The Lagrange Gaussian beam Gouy phase parameter measuring method provided by the invention has the characteristics of simplicity for realization, low requirement on structure positioning, high reliability, strong anti-interference performance, capability of realizing direct measurement with high sensitivity, capability of measuring the Gouy phase in the optical system with high numerical aperture, wide application range and the like.
Owner:CHINA JILIANG UNIV

Broadband high-gain slow wave structure

ActiveCN110060911ASmall sizeAchieving High Gain AmplificationTransit-tube circuit elementsWave structureWave slowing
The invention discloses a broadband high-gain slow wave structure. The broadband high-gain slow wave structure comprises a first traveling wave type slow wave structure, a second traveling wave type slow wave structure and a standing wave type slow wave structure between the first traveling wave type slow wave structure and the second traveling wave type slow wave structure, a traditional standingwave type slow wave structure is combined with a traveling slow wave structure so as to create a novel interaction slow wave structure. In the first traveling wave type slow wave structure, premodulation is carried out on an input electromagnetic signal, an electron beam is carried with information in the electromagnetic signal, then the electron beam is fed into the standing wave type slow wavestructure for further modulation, the carried information is further amplified, and finally the electron beam is used for stimulating the electromagnetic signal in the second traveling wave type slowwave structure and further carrying out beam-wave interaction, so that the amplified electromagnetic signal is output by the second traveling wave slow wave structure. The standing wave type slow wavestructure is introduced in a traditional wave slow wave structure, and the size of an original slow wave structure interaction circuit part is shortened effectively, so that the purposes of the invention such as broad band and high gain are realized by using the advantages that the size of a standing wave type slow wave structure interaction circuit is short, the gain is high and the frequency band of the traveling wave type slow wave structure is wide.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

A staggered grid slow wave structure with sinusoidal function profile

The invention discloses a staggered grid slow wave structure with sinusoidal function profile, which is composed of a rectangular shell, upper/lower grid teeth, upper/lower cavities and strip injection channels. The wide-edge profile of the band-shaped electron beam channel has changed from the traditional straight-line profile to the sinusoidal profile. The distribution of the longitudinal electric field along the broad side of the slow wave structure is in good agreement with the shape of the strip channel, and the distribution is sinusoidal function. The slow-wave structure can not only increase the operating frequency but also the coupling impedance, which can compensate for the non-uniformity of the coupling impedance in the wide-side direction, thus increasing the intensity of the beam-wave interaction, and further improving the electronic efficiency and output power of the traveling wave tube/backward wave tube based on the slow-wave structure. When applied to band-beam TWT, thegain of the whole TWT can also be increased. Millimeter-wave terahertz traveling-wave tubes/backward-wave tubes based on this slow-wave structure have been widely used in many military and civil applications such as communications radar electronic countermeasures imaging and so on.
Owner:SHENZHEN UNIV

Cold cathode electronic gun modulated by microwave

InactiveCN103606505ADoes not affect transmissionThe influence of small electric field distributionElectrode and associated part arrangementsElectricityMicrowave
The invention relates to a cold cathode electronic gun used in cooperation with a vacuum radiation source device. The cold cathode electronic gun comprises an electronic gun shell and a base of the electronic gun shell. The cold cathode electronic gun is provided with an upper electrode plate with array-type electron beam output holes, a lower electrode plate and a cold cathode, and further provided with a microwave input layer which is provided with an interaction cavity and arranged between the upper electrode plate and the lower electrode plate. Due to the fact that the microwave input layer is additionally arranged between the upper electrode plate and the lower electrode plate of a traditional cold cathode electronic gun, a cavity formed above the cold cathode in the middle section of the microwave input layer is used as the interaction cavity, the cold cathode is embedded in the bottom of the interaction cavity, the array-type electron beam output holes which are smaller than the microwave length in size are formed in the position, right opposite to the interaction cavity, of the upper electrode plate, and therefore the cold cathode electronic gun has the advantages of being small in space of the beam wave interaction cavity, low in power consumption, capable of being integrated, small in size, high in response speed and capable of feeding in microwaves with different frequencies as needed to modulate the current transmitted by the cold cathode so as to generate electron beams with different frequencies and strengths, providing an electron transmitting source for the mini-type electron vacuum device, effectively expanding the application range and the like.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Discontinuous field matching method for general beam-wave interaction model of traveling wave tube

The invention discloses a discontinuous field matching method for a general beam-wave interaction model of a traveling wave tube. The method comprises the following steps of S1, solving passive high-frequency field axial distribution e1 and e2 and transmission power p1 and p2 in a structural cycle; S2, performing phase retrieval on e1 and e2 to obtain e10 and e20; S3, performing periodic phase extension on e10 to obtain passive high-frequency field axial distribution E1 of an l1 section; S4, performing phase matching on a field at a jump cross section to obtain a field distribution parameter,with a continuous phase, of a high-frequency field axial component at the jump cross section; S5, performing power and reflection matching on the field at the jump cross section to obtain a passive high-frequency field axial distribution parameter of an l2 section in one structural cycle; and S6, performing periodic phase extension on the parameter obtained in the step S5 to obtain field distribution E2. Through the phase, power and reflection matching and phase extension methods, the field distribution of a whole interaction region is obtained, so that the general beam-wave interaction theoretical model can simulate the beam-wave interaction problem of the traveling wave tube adopting a high-frequency structure with dynamic phase velocity jump.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products