Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

161results about "Magnesium fluorides" patented technology

Environment-friendly separation and recovery method of fluorine in fluorine-containing waste liquid

The invention discloses an environment-friendly separation and recovery method of fluorine in a fluorine-containing waste liquid. According to the invention, a magnesium-containing compound is added into the fluorine-containing waste liquid as a precipitation agent, such that fluorine in the waste liquid is selectively precipitated; filtering is carried out, and fluorine-removed liquid and magnesium fluoride precipitate are obtained; the fluorine-removed liquid is used in waste water recycling; the magnesium fluoride precipitate is decomposed with sulfuric acid, such that a series of compounds of fluorine are obtained; decomposition residue is subjected to a dissolution-crystallization treatment, such that magnesium sulfate crystals are obtained; the obtained magnesium sulfate crystals are returned and recycled in the fluorine selective precipitation process; the crystallization mother liquor of magnesium sulfate is returned to the dissolution-crystallization process or the magnesium fluoride precipitation decomposition process. The method has the advantages of simple process, simple operation, low production cost, and good fluorine-removing effect. With the method, fluorine resource utilization is realized. The method also has the advantages of no fluorine-containing waste production and no three-waste emission.
Owner:CENT SOUTH UNIV

Method for separating lithium carbonate from electrolyte acidic leachate

The invention discloses a method for separating lithium carbonate from electrolyte acidic leachate. The method comprises the following steps of: S1, adding a soluble salt solution to aluminum electrolyte acidic leachate while stirring and heating are performed, monitoring the acidity and the concentration of fluoride ions, and stopping the addition when the pH value is greater than 5 and the concentration of the fluoride ions is less than 0.01 g/L, wherein the soluble salt is one or more selected from MeSO4, MeNO3 and MeCl, and Me is metal which can produce precipitate with F<->; S2, performing filtration on reactants, performing washing and drying on filter residues to obtain a fluoride salt of the metal Me, adding a soluble carbonate solution into the obtained filtrate with stirring andheating, and terminating the reaction when the concentration of lithium ions is less than 0.08 g/L; S3, filter the filtrate, performing washing and drying on the filter cake to obtain lithium carbonate, and performing evaporation, crystallization, washing and drying on the filtrate to obtain inorganic salts. According to the method for separating lithium carbonate from the electrolyte acidic leachate, the reaction process is controlled by controlling the concentration of the fluoride ions and the acidity, so that the lithium ions are separated from other ions, lithium carbonate with high recovery rate is obtained, and meanwhile high-purity fluoride and inorganic salt products are obtained.
Owner:NORTHEASTERN UNIV

Method and system for converting sodium-containing and fluorine-containing compounds in waste cathode carbon block of aluminum electrolytic cell

The invention relates to a method and system for converting sodium-containing and fluorine-containing compounds in a waste cathode carbon block of an aluminum electrolytic cell. The conversion methodcomprises the step that a conversion agent is used for converting the sodium-containing compound in the waste cathode carbon block of the aluminum electrolytic cell into a fluorine-free soluble sodiumcompound, converting the fluorine-containing compound into an insoluble and harmless mineral fluorine compound and converting a cyanide-containing compound into harmless N2 or NH3 and CO2 in an oxidized manner through a mechanochemical conversion reaction in a conversion mill, and therefore the hazards of fluoride and cyanide in the waste cathode carbon block of the aluminum electrolytic cell arecompletely eliminated. The conversion system comprises a waste cathode carbon block crushing device, a milling device, the conversion mill, a stirred reactor and a solid-liquid separation device which are sequentially connected in series, and the solid-liquid separation device is then directly connected with a concentration or crystallization device and a drying or heat treatment device, and thedrying or heat treatment device is connected to the crushing device. By means of the method and system, the process is simple, mass production is easy, the production cost is low, pollution of three wastes is avoided, and the method and system are environmentally friendly.
Owner:XIANGTAN UNIV

Mechano-chemical conversion and recovery method for sodium-containing compound and fluorine-containing compound in aluminum electrolysis cell waste cathode carbon blocks

The invention relates to a mechano-chemical conversion and recovery method for a sodium-containing compound and a fluorine-containing compound in aluminum electrolysis cell waste cathode carbon blocks. The method comprises the steps that the aluminum electrolysis cell waste cathode carbon blocks are crushed, ground and homogenized at first, so that waste cathode carbon powder with particles beingsmaller than or equal to 200 [mu]m is obtained; the waste cathode carbon powder, a sodium compound and fluorine compound conversion agent, a cyanide conversion agent, a grinding aid and water are added into a conversion mill; and under synchronous action of high-energy mechanical force, the sodium-containing compound in the waste cathode carbon powder is converted into a fluorine-free soluble sodium compound, the fluorine-containing compound is converted into an insoluble and harmless mineral substance fluorine compound, a cyanogen-containing compound is oxidized and converted into harmless N2or NH3 and CO2, and therefore harm of fluoride and cyanide in the aluminum electrolysis waste cathode carbon blocks are removed thoroughly, and harmless resource recycling of the aluminum electrolysis waste cathode carbon blocks is achieved. The mechano-chemical conversion and recovery method is simple in process, low in production cost, free of three-waste pollution and environmentally friendly,and large-scale production is easy to implement.
Owner:XIANGTAN UNIV

Preparation of magnesium fluoride

The invention relates to a manufacturing method of magnesium fluoride, which takes ammonium fluoride and magnesium chloride as raw materials and comprises the steps as follows: (1) an ammonium fluoride solution whose concentration is 30 to 45 percent and a magnesium chloride solution whose concentration is 25 to 36 percent are added in a reaction kettle at the same time for reaction, and a magnesium fluoride ground-paste is generated; (2) the obtained magnesium fluoride ground-paste is filtered to prepare a magnesium fluoride paste which is cleaned by using hot water the temperature of which ranges from 60 to 70 DEG C; the magnesium fluoride paste is dried for 1 to 2 hours at the temperature ranging from 250 to 400 DEG C after washing, and the finished product of the magnesium fluoride is obtained. The manufacturing method adopts the ammonium fluoride instead of hydrofluoric acid, wherein, the ammonium fluoride can be obtained through the ammonolysis by adding ammonia water into fluosilicic acid that is a by-product in the phosphate fertilizer industry; the fluosilicic acid is the deleterious-waste which is the by-product during the phosphate fertilizer production process, has very little purpose, and badly influences the environmental protection; in the manufacturing method, the development and the utilization of the fluosilicic acid greatly relieve the environmental protection pressure of the phosphate fertilizer production and the influences on the surrounding environment; and the cost is lower and the material is easy to get because the fluosilicic acid is the by-product in a phosphate fertilizer factory, thereby lowering the manufacturing cost of the magnesium fluoride.
Owner:DO FLUORIDE CHEM CO LTD

Method for preparing thermocompressed polycrystalline magnesium fluoride powder

The invention discloses a method for preparing thermocompressed polycrystalline magnesium fluoride powder. The method comprises the steps of: taking industrial grade magnesium sulfate and industrial grade sodium carbonate as initial raw materials, preparing basic magnesium carbonate by purifying the raw materials, carbonating the basic magnesium carbonate, and finally, performing a reaction of the carbonated basic magnesium carbonate and anhydrous hydrofluoric acid to obtain the thermocompressed polycrystalline magnesium fluoride powder. The method takes the industrial grade magnesium sulfate and the industrial grade sodium carbonate as the raw materials to synthesize the basic magnesium carbonate, and has the advantages of cheap raw materials, low production cost, and remarkable economic benefit; the magnesium fluoride powder prepared by the reaction of the basic magnesium carbonate and the anhydrous hydrofluoric acid has high purity and uniform particle size; the utilization rate of fluorine and magnesium are high and can reach over 98 percent; the method has no discharge of three wastes during preparation, makes all mother solutions entirely in closed circulation, and has remarkable environmental protection benefit; the method has the advantages of less investment, simple equipment, and easy operation; and an infrared optical element obtained by thermocompressing the magnesium fluoride powder prepared by the preparation method has high transmittance on infrared bands, and particularly the transmittance on infrared bands with wavelengths of between 1 and 7mu m reaches 95 percent.
Owner:BAIYIN ZHONGTIAN CHEM

Method for utilizing high-magnesium phosphate tailings to produce magnesium fluoride and by-product calcium carbonate

The invention discloses a method for utilizing high-magnesium phosphate tailings to produce magnesium fluoride and by-product calcium carbonate. The method comprises the following steps: calcinating the high-magnesium phosphate tailings at high temperature to form calcined dolomite, adding water to the calcined dolomite to perform digestion to obtain digestion solution, supplementing water to the digestion solution and then leading carbon dioxide to perform a carbonization reaction to obtain carbonized liquid, separating bottom phosphate ore sediments of the carbonized liquid after the reaction stops, filtering, and obtaining filtrate which is magnesium bicarbonate aqueous solution, and obtaining a calcium carbonate product after drying a filter cake; adding hydrofluoric acid in the obtained magnesium bicarbonate aqueous solution, filtering after the reaction, washing, and obtaining a magnesium fluoride product after drying the filter cake, The industrial waste high-magnesium phosphate tailings serve as raw materials, waste is turned into wealth, abundant magnesium calcium resources in the high-magnesium phosphate tailings are fully utilized to produce the magnesium fluoride and the by-product calcium carbonate, and the method has the advantages of being simple in process, low in production cost and basically free of three wastes.
Owner:WENGFU (GRP) CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products