Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

42 results about "Energy filtered transmission electron microscopy" patented technology

Energy-filtered transmission electron microscopy (EFTEM) is a technique used in transmission electron microscopy, in which only electrons of particular kinetic energies are used to form the image or diffraction pattern. The technique can be used to aid chemical analysis of the sample in conjunction with complementary techniques such as electron crystallography.

Method for automatically adjusting the crystal orientation through double-inclination sample stage of transmission electron microscopy

The invention provides a method for automatically adjusting the crystal orientation through a double-inclination sample stage of a transmission electron microscopy. The method comprises the following steps: calibrating the double-inclination sample stage; recording a single-crystal electronic diffraction pattern of a positive zone axis, and a camera constant, and recording five readings X1, Y1, Z1, A1 and B1 of the double-inclination sample stage; calibrating the diffraction pattern by utilizing the known lattice type and parameters of a to-be-detected sample; determining a reference coordinate system through the projection positions of two rotating shafts of the double-inclination sample stage to obtain double-inclination stage readings X2, Y2, Z2, A2 and B2 needed by assigned orientation; and inputting the calculated X2, Y2, Z2, A2 and B2 values by a user through a control panel of the transmission electron microscopy, thus being capable of realizing the automatic tilting and translation process. The calculation process is easily programmed and realized, the dependence degree of an operator is reduced, the testing efficiency can be greatly improved, and the sample damage caused by long-time high-energy electronic beam radiation can also be avoided.
Owner:FUJIAN UNIV OF TECH

Stress test grid of nano material used for transmission electron microscopy

A nanometer material stress test grid for a transmission electron microscope belongs to the field of nanometer material original position observation. The grid includes a supporting part, a drive part and a mechanical test part. The supporting part is a metal ring (1); the drive part is a thermal double-metal slice (2) formed by different linear expansibilities; one end of the drive part is fixed on the upper surface of the metal ring by a pressure bit I (4) and the other end is free; the other side of the metal ring utilizes a pressure bit II (5) to fix a suspension beam (3) with tested force and known elasticity modulus with the thermal double-metal slice in parallel, or the thermal double-metal slice and the suspension beam are arranged in parallel and are fixed on the same side of the metal ring by the pressure bit; all the clearance widths are 2 to 50 Mum and are symmetrically distributed on the center of a copper ring. The invention has the advantages of reliable performance, convenient mounting and simple structure can realize large angle tilting along the X and Y directions by utilizing a high resolution transmission electron microscope and acquire the stress dimension when acquiring a high resolution image of the microstructure change of nanometer material under stress action.
Owner:BEIJING UNIV OF TECH

A kind of sample preparation method for transmission electron microscope observation

InactiveCN102269771AGuaranteed accuracySolve the difficult problem of cutting and thinning samples for TEM observationPreparing sample for investigationScanning probe techniquesEnergy filtered transmission electron microscopyHigh-resolution transmission electron microscopy
The invention provides a method for preparing an observational sample of a transmission electron microscope. The method provided by the invention comprises the following steps of: providing a semiconductor device which needs to be observed and comprises a substrate and a graphic layer on the substrate; fixing a new substrate on the graphic layer to form a new semiconductor device; removing the substrate; observing the exposed graphic layer and determining a graphic area which needs to be further observed by the transmission electron microscope; cutting and thinning the new semiconductor device along the vertical cross-section direction of the new semiconductor device to expose the cross section of the graphic area which is on the exposed graphic layer and needs to be further observed by the transmission electron microscope; then forming the observational sample with the thickness which satisfies the observation requirement of the transmission electron microscope. The method for preparing the observational sample of the transmission electron microscope, provided by the invention, can assure the accuracy of data including graphic line width and the like which are obtained through the TEM (Transmission Electron Microscope) observation.
Owner:SEMICON MFG INT (SHANGHAI) CORP +1

Membrane pore structure and porosity testing method based on confocal laser scanning microscopy

The invention provides a membrane pore structure and a porosity testing method based on CLSM (confocal laser scanning microscopy), comprising: preparing a sample, observing the sample, processing data and the other steps. Traditional testing methods include scanning electron microscopy, transmission electron microscopy, mercury intrusion method, nitrogen adsorption method and other methods and have their respective disadvantages; for example, high pressure required in the testing process of the mercury intrusion method may deform membrane structure; sample preparation in the transmission electron microscopy and scanning electron microscopy is high in time consumption and results in big damage to samples. Membrane pore structure and porosity are tested by means of confocal laser scanning microscopy, it is only required to perform single dyeing on a sample under test with fluorescent dye, information in the sample can be acquired without destroying the sample, operating is simple, and little damage is caused to the sample; in addition, sample testing herein has no need for drying, namely, a sample can be tested in an environment similar to a membrane when a liquid separation membrane is under test, and the results are more accurate and reliable.
Owner:王凯军 +2

Transmission electron microscopy sample preparation method capable of detecting Damascus seed crystal layer and barrier layer

The invention discloses a transmission electron microscopy sample preparation method capable of detecting a Damascus seed crystal layer and a barrier layer, which includes the following steps: a diffusion barrier layer A and a seed crystal layer A are sequentially deposited again on a Damascus structure on which the diffusion barrier layer and the seed crystal layer are already deposited according to the standard Damascus process; copper is filled in the Damascus structure, and the copper filled in the Damascus structure plays the supporting role in sample preparation to prevent the deformation of a sample; the Damascus structure is cut into the sample; and transmission electron microscopy is used for detecting the thicknesses of the barrier layers and the seed crystal layers and the deposit coverage topography. Since the transmission electron microscopy sample preparation method utilizes the copper to fill the Damascus structure, the surface of the seed crystal layers can be prevented from being injured by the environment and sample preparation before transmission electron microscopy observation, the copper plays the supporting role in the focused ion beam cutting process, and therefore can prevent the deformation of the Damascus structure caused by sample preparation, and a TEM (transmission electron microscopy) picture can truly reflect the thicknesses of the barrier layers and the seed crystal layers and the deposit coverage topography at the same time.
Owner:SHANGHAI HUALI MICROELECTRONICS CORP

Simple preparation method of millimeter level monocrystalline graphene

ActiveCN105439126AReduce nucleation densityLarge and uniformCopper foilSingle crystal
The invention belongs to the technical field of advanced carbon materials and semiconductor technologies, and especially relates to a simple and stable preparation method of large-area monocrystalline graphene. The method is suitable for preparing millimeter level monocrystalline graphene. The method is characterized in that the monocrystalline graphene is prepared through a low pressure chemical vapor deposition technology at 1000DEG C by using methane (CH4) as a carbon source and hydrogen as a reducing gas. Acetone or ethanol ultrasonic treatment of copper foil is not needed, polishing and other pretreatment processes of the copper foil by adopting a complex electrochemical process are not needed, a several-hours and high-hydrogen flow annealing process is not needed, and only complete extraction of air in a reactor and guaranteeing of no introduction of gases in the heating process are needed, so the simple treatment method greatly reduces the nucleating density of graphene on the copper foil, and realizes growth of the monocrystalline graphene with the opposite side distance reaching 1mm in 2-3h. Results of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectrum analysis of a sample prove that the sample is the monocrystalline graphene and has few defects.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

Connection hole test structure and method for preparing transmission electron microscopy

The invention discloses a connection hole test structure and a method for preparing transmission electron microscopy (TEM), aiming at solving the problem that the side wall of the connection hole Glue Layer and the thickness of Barrier seed can not be measured in case that the diameter of the connection hole is less than the thickness of a detected sample wafer. The structure comprises a primary hole, a calibration hole and a measurement hole, wherein all the bottom surfaces of the primary hole, the calibration hole and the measurement hole are axis symmetric figures; a plane vertical to the bottom surface exists; a straight line of the plane, which is intersected with the bottom surfaces, is the symmetry axis of all the bottom surfaces; the primary hole is the connection hole; the thickness of the calibration hole perpendicular to the direction of the plane is the thickness of the detected sample wafer for controlling the thickness of the detected sample wafer to reach the predetermined thickness; the thickness of the measurement hole perpendicular to the direction of the plane is equal to the sum of the thickness of the calibration hole and the primary hole; the measurement hole is required to be identical to the object to be measured in the connection hole for measuring the size of the connection hole.
Owner:SEMICON MFG INT (SHANGHAI) CORP

Transmission electron microscopy sample preparation method capable of detecting Damascus seed crystal layer and barrier layer

The invention discloses a transmission electron microscopy sample preparation method capable of detecting a Damascus seed crystal layer and a barrier layer, which includes the following steps: a diffusion barrier layer A and a seed crystal layer A are sequentially deposited again on a Damascus structure on which the diffusion barrier layer and the seed crystal layer are already deposited according to the standard Damascus process; copper is filled in the Damascus structure, and the copper filled in the Damascus structure plays the supporting role in sample preparation to prevent the deformation of a sample; the Damascus structure is cut into the sample; and transmission electron microscopy is used for detecting the thicknesses of the barrier layers and the seed crystal layers and the deposit coverage topography. Since the transmission electron microscopy sample preparation method utilizes the copper to fill the Damascus structure, the surface of the seed crystal layers can be prevented from being injured by the environment and sample preparation before transmission electron microscopy observation, the copper plays the supporting role in the focused ion beam cutting process, and therefore can prevent the deformation of the Damascus structure caused by sample preparation, and a TEM (transmission electron microscopy) picture can truly reflect the thicknesses of the barrier layers and the seed crystal layers and the deposit coverage topography at the same time.
Owner:SHANGHAI HUALI MICROELECTRONICS CORP

Correlative light-and transmission electron microscopy sample treatment reagent and CLEM detection method

The invention provides a correlative light-and transmission electron microscopy sample treatment reagent and a CLEM detection method using the provided correlative light-and transmission electron microscopy sample treatment reagent. The reagent comprises a fixing agent, an embedding agent-hydrophilic alkaline resin GMA, sodium borohydride, nuclear fluorescent dye and transmission electron microscopy dye. The CLEM detection method comprises steps of fixing a sample, removing background fluorescence, dehydrating the sample, permeating, embedding, polymerizing, ultrathin slicing, laser confocal microscope imaging, acquiring a transmission electron microscopy image, and processing the image in later period. The method overcomes the difficulty of being compatible with a fluorescent signal and solves a problem of storage of a sample cell structure in the prior art. The sample has a strong fluorescent signal and complete ultramicrostructure information can be retained; the method adopts a simple but effective image normalization method, jointly uses existing fluorescent microscope and transmission electron microscopy so as to acquire highly consistent correlative light-and electron microscopy images. The method combines positioning information of a target molecule and ultramicrostructure information, thereby being very practical.
Owner:ZHEJIANG UNIV

In-situ sample rod for transmission electron microscopy

The invention relates to the technical field of material analysis and test, in particular to the field of in-situ measurement and research of a transmission electron microscopy part and a low-dimensional material. By an in-situ sample rod for a transmission electron microscopy, the technical problem the accurate temperature control of a low-temperature region cannot be achieved is solved, and thein-situ sample rod for the transmission electron microscopy is provided. The sample rod comprises a sample rod body, a sealing test cavity, a passive refrigerator, an active refrigerator, a temperature measurement device and a temperature controller, wherein the sealing test cavity is arranged in front of the sample rod body, the passive refrigerator is used for performing passive refrigerating onthe sealing test cavity, the active refrigerator is used for performing active refrigerating on the sealing test cavity, the temperature measurement device is used for detecting a temperature in thesealing test cavity, and the temperature controller is used for controlling the active refrigerator to achieve active refrigerating according to a measurement value of the temperature measurement device. The passive refrigerator is used as primary refrigerating, the active refrigerator is used as secondary refrigerating, and the sample rod can be used for achieving accurate temperature control ofthe low-temperature region.
Owner:关一 +1

In-situ transmission electron microscopy based nanometer material alternating-current electrical property test device and method

The invention discloses an in-situ transmission electron microscopy based nanometer material alternating-current electrical property test device. The test device comprises a nanowire sample, an in-situ electrical test device and an impedance spectroscopy analyzing device. The in-situ electrical test device comprises a tungsten tipped probe and a nanowire sample holder; the nanowire sample can be fixed to the nanowire sample holder; the tungsten tipped probe is controlled through a nano micro-manipulation rod to contact with the nanowire sample; after the tungsten tipped probe contacts with the nanowire sample, the tungsten tipped probe, the nanowire sample and the impedance spectroscopy analyzing device form a circuit. After the sample is loaded into the established alternating-current electrical property test device, contact state of the probe and the sample can be changed by application of test alternating-current signals and control of the nano micro-manipulation rod, operations are much simpler than those of other methods, test results are intuitive and have quantitative test characteristics, comprehensive electrical parameter information is achieved, and the test device can be widely applied to electrical property test of various nano materials in the future.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products