Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

222 results about "Intracellular protein" patented technology

Analytical method for researching protein structure or protein-protein interaction

The invention relates to an analytical method for researching protein structure or protein-protein interaction. The method comprises the following steps: performing crosslinking and enzymolysis on a protein composite in a cell by using a crosslinking agent with reactive groups on two sides and a breakable group, and taking a part of the enzymatic hydrolysate for a derivatization reaction for mass spectrometry; after breaking the crosslinking agent by means of a chemical method for the other part of the enzymatic hydrolysate, enriching peptide sections with an enriching material, and performing mass spectrometry on the enzymatic hydrolysate without the enriched peptide sections; determining the crosslinked peptide sections according to a library searching result so as to establish a peptide section library; finding out a candidate peptide section from the peptide section library according to N-terminal amino acid information of the crosslinked peptide section determined in the mass spectrogram of the crosslinked peptide section; and determining the crosslinked peptide section sequence by combining the mass spectrogram m/z of the crosslinked peptide section and the characteristic ions of the peptide section so as to obtain the protein structure and protein-protein interaction information. The method has the advantage of being simple to operate, and is applied to structural analysis of proteins and analysis of protein-protein composite interaction.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Protein-protein interactions and methods for identifying interacting proteins and the amino acid sequence at the site of interaction

The invention relates to protein-protein interactions and methods for identifying interacting proteins and the amino acid sequence at the site of interaction. Using overlapping hexapeptides that encode for the entire amino acid sequences of the linker domains of human P-glycoprotein gene 1 and 3 (HP-gp1 and HP-gp3), a direct and specific binding between HP-gp1 and 3 linker domains and intracellular proteins was demonstrated. Three different stretches (617EKGIYFKLVTM627, (SEQ ID NO: 1) 658SRSSLIRKRSTRRSVRGSQA677 (SEQ ID NO: 2) and 694PVSFWRIMKLNLT706 (SEQ ID NO: 3) for HP-gp1 and 618LMKKEGVYFKLVNM631 (SEQ ID NO: 4), 648KAATRMAPNGWKSRLFRHSTQKNLKNS674 (SEQ ID NO: 5), and 695PVSFLKVLKLNKT707 (SEQ ID NO: 6) for HP-gp3) in linker domains bound to proteins with apparent molecular masses of ˜80 kDa, 57 kDa and 30 kDa. The binding of the 57 kDa protein was further characterized. Purification and partial N-terminal amino acid sequencing of the 57 kDa protein showed that it encodes the N-terminal amino acids of alpha and beta-tubulins. The method of the present invention was further validated with Annexin. The present invention thus demonstrates a novel concept whereby the interactions between two proteins are mediated by strings of few amino acids with high and repulsive binding energies, enabling the identification of high affinity binding sites between any interacting proteins.
Owner:GEORGES ELIAS

Soil protein extraction and intracellular protein separation method

The invention provides a high-efficiency soil protein extraction method, comprising the following steps: adding soil in a pre-cooling soil protein extraction buffer solution and blending and oscillating the mixture in a 4 DEG C shaking table over night; performing drawing and filtering of the shaken mixture in a buchner funnel using a crude filter paper; processing the drawing and filtering liquid by macroporous resin (D101), filtering the processed liquid through a 0.22 Mum microporous membrane, the filtered liquid being the extracellular protein mother liquid; processing the cells on the filter membrane by cleaning, crushing, centrifugalizing and vacuum drying to obtain the dried powder, namely intracellular soil protein sediment. The extracellular protein mother liquid is processed by centrifuging, separating and vacuum drying to obtain the intracellular soil protein dried powder; degrading the intracellular soil protein dried powder until the degraded intracellular soil protein dried powder is clearly separated on 10% polyacrylamide gel SDS-PAG electrophoresis, the method has high separation efficiency, microbial yield is 37.5%, which is higher than the yield of the traditional method 0.1-1%, simple operation flow, good SDS-PAGE resolution and good mass spectrum identification effect.
Owner:FUJIAN AGRI & FORESTRY UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products