Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2587 results about "Polybutylene terephthalate" patented technology

Polybutylene terephthalate (PBT) is a thermoplastic engineering polymer that is used as an insulator in the electrical and electronics industries. It is a thermoplastic (semi-)crystalline polymer, and a type of polyester. PBT is resistant to solvents, shrinks very little during forming, is mechanically strong, heat-resistant up to 150 °C (or 200 °C with glass-fibre reinforcement) and can be treated with flame retardants to make it noncombustible. It was developed by Britain's Imperial Chemical Industries (ICI).

Method for fabricating composite pressure vessels

A process for fabricating a composite vessel includes the steps of: A) preforming (e.g., by winding fiber and at least one thermoplastic substance onto a thermoplastic liner) a thermoplastic shell which has at least one opening for access to the interior; B) extruding a circular cross section of a fluid parison of thermoplastic material (which preferably is chosen to have a melting point lower than that of the thermoplastic shell) into the interior of the thermoplastic shell through the opening; C) in a mold, applying at least one force (such as gas under pressure) which tends to urge the fluid parison toward the interior walls of the thermoplastic shell (which may be preheated prior to introduction into the mold) such that the fluid parison imparts heat to the thermoplastic shell; D) continuing step C) until the thermoplastic shell and the fluid parison consolidate to form a composite vessel; E) cooling the vessel until it is solidified; and F) removing the vessel from the mold. For some composite vessels, prior to step C), an insert may be introduced into the interior of the parison and positioned in alignment with the opening in the thermoplastic shell such that the insert is rendered integral with the composite vessel during step D). Suitable thermoplastic materials include polyethylene, polypropylene, polybutylene terephthalate and polyethylene terephthalate. The resulting composite vessel exhibits superior mechanical and aesthetic properties.
Owner:FLECK CONTROLS +1

Hybrid impact modifiers and method for preparing the same

The present invention relates to hybrid impact modifiers prepared by:
    • either spray drying, coagulation, freeze coagulation or other known recovery methods of a mixture of a latex or slurry of standard impact modifiers and a slurry of a mineral filler,
    • either simultaneous drying (by spray-drying, coagulation other known recovery possible methods) of (i) a latex or slurry of standard impact modifiers and of (ii) a slurry of a mineral filler,
further to the coagulation or freeze coagulation, if any, there is a filtration and drying step to recover these hybrid impact modifiers as a powder.
The host polymers to be impact modified, can be any thermoplastic. Advantageously it can be polyvinyl chloride (PVC), polyamide (PA), polymethyl methacrylate (PMMA), polystyrene (PS), polycarbonate (PC), thermoplastic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycyclohexanedimethanol terephthalate, and polyolefins such as polyethylene (PE), polypropylene (PP), and any other matrix polymer which can be improved by an impact modifier.
The present invention also relates to the use of said hybrid impact modifiers in thermoplastic polymers.
The present invention also relates to a thermoplastic polymer containing said hybrid impact modifiers.
The present invention also relates to hybrid impact modifiers having improved powder properties (flowability, lumping/caking resistance, segregation between the organic and the mineral parts).
The present invention also relates to a thermoplastic polymer containing said hybrid impact modifiers with better dispersion homogeneities.
Owner:ARKEMA FRANCE SA

Process for continuously producing polybutylene terephthalate

Polybutylene terephthalate having good heat stability and excellent hydrolysis resistance is continuously produced in a series of a first reactor for reacting an aromatic dicarboxylic acid comprising terephthalic acid as a main ingredient or a derivative thereof with a glycol comprising 1,4-butanediol as a main ingredient, thereby producing an oligomer with an average degree of polymerization of 2.2 to 5, a second reactor for polycondensating the oligomer from the first reactor, thereby preparing a low polymerization product with an average degree of polymerization of 25 to 40, and a third reactor for further polycondensating the low polymerization product from the second reactor, thereby producing a high molecular weight polyester with an average degree of polymerization of 70 to 130, or followed by a fourth reactor for further polycondensing the polyester from the third reactor to an average degree of polymerization of 150 to 200, thereby producing a high molecular weight polyester. Another third reactor or a plurality of third reactors can be provided in parallel to the third reactor, thereby producing different kinds of polybutylene phthalate with different degrees of polymerization from that produced in the main line of the third and fourth reactors or adjusting operating conditions of each of a plurality of the third reactors to increase kinds, precise quality.
Owner:HITACHI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products