Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

506 results about "Acesulfame potassium" patented technology

Acesulfame potassium (/ˌeɪsiːˈsʌlfeɪm/ AY-see-SUL-faym), also known as acesulfame K (K is the symbol for potassium) or Ace K, is a calorie-free sugar substitute (artificial sweetener) often marketed under the trade names Sunett and Sweet One. In the European Union, it is known under the E number (additive code) E950. It was discovered accidentally in 1967 by German chemist Karl Clauss at Hoechst AG (now Nutrinova). In chemical structure, acesulfame potassium is the potassium salt of 6-methyl-1,2,3-oxathiazine-4(3H)-one 2,2-dioxide. It is a white crystalline powder with molecular formula C₄H₄KNO₄S and a molecular weight of 201.24 g/mol.

Acesulfame potassium cyclization continuous production method

The invention relates to an acesulfame potassium cyclization continuous production method. The method is characterized in that the sulfonation reaction and hydrolysis reaction comprise the following steps: step a, separately pumping an intermediate generated during a synthesis reaction and sulfur trioxide into a sulfonation reactor in a certain speed, carrying out sulfonation reactions in the sulfonation reactor; step b, gasifying dichloromethane when the concentration of the reactants in the sulfonation reactor reach a certain level, spraying the sulfonation liquid into a hydrolysis reactor; step c, dropwise adding acidic water into the hydrolysis reactor to carry out hydrolysis reactions. The method has the advantages that an cyclization one-step reaction technology is adopted, thus the continuity of production operation is realized, and the work strength of workers is reduced; compared to the conventional intermittent production technology, the one-step reaction method has a higher stability, improves the service life of the reactor, shortens the reaction time, and reduces the side reactions. Furthermore, in the method, the sulfonation reaction temperature is raised, then dichloromethane gasification is utilized to reduce the reaction temperature, so that low temperature production is avoided, and a deep cooling ice machine is stopped, so the production efficient is greatly improved, and the energy consumption is largely reduced.
Owner:ANHUI JINGHE IND

Method for recycling dichloromethane in acesulfame potassium synthesis process

The invention discloses a method for recycling dichloromethane in an acesulfame potassium synthesis process. The method comprises the steps of a, adding roughly distilled dichloromethane into a dehydrating tower, heating, condensing to enable steam of a mixed solution of dichloromethane and water to enter a dehydration overflow tank and dichloromethane containing qualified water at the bottom to enter a semi-finished product tank so as to be used by a rectifying tower; b, enabling dichloromethane containing unqualified water at the bottom of the overflow tank to enter the dehydrating tower again through backflow and dichloromethane with high water content at the top to enter a crude product tank, and regularly discharging layered water in the crude product tank; c, enabling dichloromethane containing qualified water in the semi-finished product tank to enter the rectifying tower, distilling to 45 DEG C, enabling dichloromethane steam to enter the dehydration overflow tank, and sucking dichloromethane with high impurity content at the bottom into a residual solution tank; and d, after detecting dichloromethane in the dehydration overflow tank to be qualified, placing dichloromethane into a finished product tank so as to be used for synthesizing and sulfonating, and enabling the unqualified dichloromethane to enter the rectifying tower so as to be rectified again.
Owner:ANHUI JINGHE IND

Triethylamine recovery processing method and device for production of acesulfame potassium

The invention relates to a triethylamine reclaim treatment method and the devices in the production of acesulfame-K, which is characterized in that the method includes the following steps: a. the crude triethylamine containing water is put into a distillation kettle (1), which is heated to the temperature of 38 DEG C to 42 DEG C, the time is about 20 to 40 minutes, the dichloromethane and other impurities with the low boiling points which are contained in the crude triethylamine are firstly evaporated, collected and then are condensed and collected by a condenser (3); b. the heating is carried out continually to about 83 DEG C, the temperature is kept for more than 30 minutes, which ensures that the water and triethylamine are placed still for layer separation, a lower layer is water, an upper layer is triethylamine, and triethylamine of the upper layer can be collected after the water is drained completely from the bottom of a kettle. Finally, the collected triethylamine is dried by the solid potassium hydroxide or a molecular screen, so the water content of triethylamine can be lower than 0.1 percent. The invention has the advantages of simple using equipment, convenient operation, safety, reliability, low cost, improved reclaim ratio of the product and significantly reduced operating cost.
Owner:ANHUI JINGHE IND

Neutralization direct crystallization production technology of acesulfame potassium

The invention relates to a neutralization direct crystallization production technology of acesulfame potassium, the neutralization direct crystallization production technology of the acesulfame potassium includes neutralization reaction, separation and hydrolysis rough crystallization reaction stepS, and the neutralization direct crystallization production technology is characterized in that: a neutralization direct crystallization method is used in the neutralization reaction, an original alkali is directly added into a water-wash organic phase of a neutralization tank for stirring for reaction, after precipitation and stratification, acesulfame potassium crystals are directly separated to a crude evaporation kettle for heating to evaporate dichloromethane which is carried out, and then an acesulfame potassium crude product is obtained by freezing and centrifugation. The neutralization direct crystallization production technology has the advantages that: through use of the neutralization direct crystallization production technology, the production operation is simplified and the worker labor intensity is reduced; and compared with traditional production technologies in the prior art, the neutralization direct crystallization production technology removes alkali preparation, concentration and other operation, simplifies the operation, reduces the labor intensity, and saves a large amount of water and steam.
Owner:ANHUI JINGHE IND

Acesulfame potassium synthesis section acylation reaction process

The invention discloses an acesulfame potassium synthesis section acylation reaction process. The process includes the following steps that a, a stirring machine of an acylation kiln and circulating cooling water flowing through a plate heat exchanger are started; b, objects obtained through the synthesis reaction of sulfamic acid and triethylamine are placed in an acylation kiln. C, dichloromethane and diketene with the volume ratio of 1 to 1 are evenly mixed, and a mixture of dichloromethane and diketene is dropwise added into the acylation kiln according to the ingredient amount, wherein the dropwise adding flow is 500 L/H; d, vaporized dichloromethane returns to a container for containing dichloromethane after passing through the plate heat exchanger, the mixture of dichloromethane and diketene is dropwise added into the acylation kiln, the acylation reaction temperature is raised, the reaction time is shortened, and the production efficiency is improved; meanwhile, dichloromethane is evaporated through the acylation reaction, evaporated dichloromethane is liquefied after being cooled through circulating cooling water, and liquefied dichloromethane returns to the container for containing dichloromethane to be recycled. The process is simplified, and the energy consumption is lowered.
Owner:ANHUI JINGHE IND

Method for solvent self-heating separation in acesulfame potassium synthesis

The invention discloses a method for solvent self-heating separation in acesulfame potassium synthesis. The method includes the following steps of pumping solid potassium hydroxide and water of the conventional adding percents into a reactor to make potassium hydroxide and water dissolved in a neutralization kettle and release heat till the temperature is naturally raised to 60 DEG C, starting a vacuum pump connected with the neutralization kettle to vacuumize the neutralization kettle to the negative pressure of -0.4 MPa, pumping an organic phase of the conventional adding percent into the reactor to make the temperature in the kettle naturally decrease and then increase, starting the vacuum pump to conduct vacuumization till a condenser valve when the temperature of the kettle is raised to 50 DEG C, starting the condenser brine valve, controlling the temperature of the kettle at 45 DEG C by controlling the feeding ratio of the organic phase to sodium carbonate, and discharging condensed dichloromethane to a solvent collecting tank through a condenser. The method has the advantages that solvent is pressurized in the reactor and depressurized after getting out of the reactor, the boiling point of the solvent is reduced, original processes of separating, washing, separating, pre-boiling and the like are omitted through temperature control, operation is simplified, labor intensity is reduced, machines and pumps are less used, and meanwhile lots of steam is saved.
Owner:ANHUI JINGHE IND

Method for measuring and calculating acesulfame potassium agglomeration period

The present invention discloses a method for measuring and calculating an acesulfame potassium agglomeration period. The method comprises the following steps: (1) preparing a measurement and calculation device for the acesulfame potassium agglomeration period, wherein the structure of the device comprises: a L-shaped baffle and a semi-conical funnel; (2) pouring 100 g of acesulfame potassium to the device, and timing until the acesulfame potassium is completely poured in the device, measuring the falling time t, substituting the t into the following formula: T1=-40.56*t+462.63, and calculating a first period T1; (3) measuring the vertical height H and the pavement length L of the acesulfame potassium, wherein of the vertical height and the pavement length are formed after the acesulfame potassium is completely leaked, calculating a H/L value, substituting the H/L value into the following formula: T2 =-752.58*H/L+544.41, and calculating a second period T2; (4) calculating the arithmetic mean of the T1 and the T2 to obtain the acesulfame potassium agglomeration period T. According to the present invention, the method of the present invention is simple; with the method, the acesulfame potassium agglomeration period can be accurately measured and calculated, such that the storage, the transport and the use can be effective arranged so as to substantially improve the work efficiency and reduce the labor cost.
Owner:南通宏信化工有限公司

Method for continuously producing acesulfame potassium

The invention belongs to the field of chemical production, and provides a method for continuously producing acesulfame potassium, which comprises the following steps: continuously mixing and dissolving sulfamic acid and dichloromethane, continuously neutralizing with a triethylamine solution, introducing the neutralized reaction solution and ketene dimer into a continuous reactor, and carrying outaddition acylation reaction to obtain a DKA reaction solution; sulfur trioxide and solvent micro-mixing: S03, enabling dichloromethane to enter a micro-mixer, so as to prepare a cyclizing agent; cyclization and hydrolysis: continuously feeding the DKA reaction solution and a cyclizing agent into a cyclization microreactor to generate a cyclization reaction solution, and continuously feeding the cyclization reaction solution into a hydrolysis microreactor to obtain an acesulfamic acid reaction solution; enabling the acesulfame acid reaction liquid and dichloromethane to enter continuous extraction equipment, enabling an extracted organic phase and a potassium hydroxide aqueous solution to enter a continuous neutralization reactor to obtain acesulfame acid potassium reaction liquid, and subjecting the acesulfame acid potassium reaction liquid to continuous concentration, continuous crystallization, continuous separation and continuous drying to obtain the acesulfame acid potassium finished product. The process has the characteristics of simple process, low cost, good product quality, continuous whole process and the like.
Owner:NANTONG ACETIC ACID CHEM +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products