In one embodiment, a membrane of
proton-
electron conducting ceramics that is useful for the conversion of a
hydrocarbon and steam to
hydrogen has a porous support of M′-Sr1-z′M″z′Ce1-x′-y′Zrx′M′″y′O3-δ, Al2O3,
mullite, ZrO2, CeO2 or any mixtures thereof where: M′ is Ni, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, W, Zn, Pt, Ru, Rh, Pd, alloys thereof or mixtures thereof; M″ is Ba, Ca, Mg, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, or Yb; M′″ is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, W, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, or Yb; z′ is 0 to about 0.5; x′ is 0 to about 0.5; y′ is 0 to about 0.5; and x′+y′>0; for example, Ni—SrCe1-x′Zrx′O3-δ, where x′ is about 0.1 to about 0.3. The porous support is coated with a film of a
Perovskite-type
oxide of the formula SrCe1-x-yZrxMyO3-δ where M is at least one of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, W, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, x is 0 to about 0.15 and y is about 0.1 to about 0.3. By including the Zr and M in the
oxide in place of Ce, the stability can be improved while maintaining sufficient
hydrogen flux for efficient generation of
hydrogen. In this manner, the conversion can be carried out by performing steam
methane reforming (SMR) and / or water-gas shift reactions (WGS) at high temperature, where the conversion of CO to CO2 and H2 is driven by the removal of H2 to give high conversions. Methods of preparing the membrane cells and a
system for use of the membrane cells to prepare hydrogen are presented. A method for sequestering CO2 by reaction with
methane or other
hydrocarbon catalyzed by the novel membrane to form a
syngas is also presented.