Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

94 results about "Protein network" patented technology

A method of identifying protein compounds by using a fruit fly optimization method

The invention provides a method of identifying protein compounds by using a fruit fly optimization method. The method comprises the steps of converting a protein-protein interaction network into a undirected graph, performing pretreatment on the edges and nodes of the protein-protein interaction network, establishing a dynamic protein-protein interaction network, setting parameters, forming fruit fly positions, matching fruit flies with the protein-protein interaction network, determining initialization fruit fly positions, determining the fruit fly odor concentration, updating the fruit fly positions, generating a protein compound, and filtering the protein compound. The method gives full consideration to the dynamic nature of the protein network, the protein compound inner core-attachment structure and the locality and wholeness of the protein-protein interaction network and can identify protein compounds accurately. The results of simulation experiments show that the performance of the indexes such as the accuracy and the recall ratio are excellent. Compared with other clustering methods, the method, based on the characteristics of the protein network and the protein compounds, realizes the protein compound identification process and improves the protein compound identification accuracy.
Owner:SHAANXI NORMAL UNIV

Combinatorial multidomain mesoporous chips and a method for fractionation, stabilization, and storage of biomolecules

ActiveUS20110065207A1High protein recoveryLow protein amountElectrolysis componentsSamplingFractionationTherapeutic effect
A new fractionation device shows desirable features for exploratory screening and biomarker discovery. The constituent MSCs may be tailored for desired pore sizes and surface properties and for the sequestration and enrichment of extremely low abundant protein and peptides in desired ranges of the mass/charge spectrum. The MSCs are effective in yielding reproducible extracts from complex biological samples as small as 10 μl in a time as short as 30 minutes. They are inexpensive to manufacture, and allow for scaled up production to attain the simultaneous processing of a large number of samples. The MSCs are multiplexed, label-free diagnostic tools with the potential of biological recognition moiety modification for enhanced specificity. The MSCs may store, protect and stabilize biological fluids, enabling the simplified and cost-effective collection and transportation of clinical samples. The MSC-based device may serve as a diagnostic tool to complement histopathology, imaging, and other conventional clinical techniques. The MSCs mediated identification of disease-specific protein signatures may help in the selection of personalized therapeutic combinations, in the real-time assessment of therapeutic efficacy and toxicity, and in the rational modulation of therapy based on the changes in the protein networks associated with the prognosis and the drug resistance of the disease.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

MicroRNA-disease association prediction method based on multi-mode stacking automatic coding machine

The invention discloses a microRNA-disease association prediction method based on a multi-mode stacking automatic coding machine. The method comprises: forming microRNA sequence features and disease semantic similarity features; constructing a microRNA-protein-disease network, a microRNA-mRNA-disease network and a microRNA-lncRNA-disease network, and respectively obtaining network adjacent characteristics between microRNA and protein, between disease and protein, between mRNA and lncRNA and between disease and lncRNA by using a LINE network embedding method; mining, by using a multi-mode stacking automatic coding machine, the advanced abstract features of four features (self attribute features, protein network adjacent features, mRNA network adjacent features and lncRNA network adjacent features) of microRNA and diseases, thereby reducing the time complexity of a model and improving the prediction accuracy of the model; and training and predicting the processed features by using a CatBoost classifier, and taking an average value of prediction scores of the four features as a final prediction score. According to the method, the problems of high time consumption and high cost of a traditional biological experiment method are solved, so that a better classification effect is achieved, and the potential incidence relation between microRNA and diseases is predicted with higher accuracy.
Owner:XINJIANG TECHN INST OF PHYSICS & CHEM CHINESE ACAD OF SCI

Combinatorial multidomain mesoporous chips and a method for fractionation, stabilization, and storage of biomolecules

A new fractionation device shows desirable features for exploratory screening and biomarker discovery. The constituent MSCs may be tailored for desired pore sizes and surface properties and for the sequestration and enrichment of extremely low abundant protein and peptides in desired ranges of the mass / charge spectrum. The MSCs are effective in yielding reproducible extracts from complex biological samples as small as 10 μl in a time as short as 30 minutes. They are inexpensive to manufacture, and allow for scaled up production to attain the simultaneous processing of a large number of samples. The MSCs are multiplexed, label-free diagnostic tools with the potential of biological recognition moiety modification for enhanced specificity. The MSCs may store, protect and stabilize biological fluids, enabling the simplified and cost-effective collection and transportation of clinical samples. The MSC-based device may serve as a diagnostic tool to complement histopathology, imaging, and other conventional clinical techniques. The MSCs mediated identification of disease-specific protein signatures may help in the selection of personalized therapeutic combinations, in the real-time assessment of therapeutic efficacy and toxicity, and in the rational modulation of therapy based on the changes in the protein networks associated with the prognosis and the drug resistance of the disease.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products