Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

37results about How to "Reduced mass transfer polarization" patented technology

Lithium-sulfur battery positive electrode structure and preparation method thereof

The present invention relates to a lithium-sulfur battery positive electrode structure and a preparation method thereof. According to the lithium-sulfur battery positive electrode structure, a current collector is adopted as a substrate, two carbon-sulfur complex layers with different pore sizes are attached onto the substrate, the structure sequentially comprises the current collector, the large pore size carbon-sulfur complex layer and the small pore size carbon-sulfur complex layer, the thickness of the large pore size carbon-sulfur complex layer is 50-500 mum, the thickness of the small pore size carbon-sulfur complex layer is 10-200 mum, the large pore size carbon material is a carbon material with a pore size of greater than 100 nm and less than 1 mum and a pore volume accounting for 50-90% of the total pore volume, and the small pore size carbon material is a carbon material with a pore size of 0.5-100 nm and a pore volume accounting for more than 50-90% of the total pore volume. With the lithium-sulfur battery positive electrode structure, the mass transfer curvature of the lithium ions in the electrode is effectively increased, the lithium ion transmission path is prolonged, provision of the capacity of the high supporting capacity active substance is easily achieved, and the energy density of the battery is increased.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Electrode of hydrocarbon produced by carbon dioxide through electrochemical reduction and preparation and application of electrode

The invention relates to an electrode of hydrocarbon produced by carbon dioxide through electrochemical reduction and a preparation and an application of the electrode. The electrode comprises a base layer, a thin-film layer and an ordered layer, wherein the thin-film layer is prepared from porous copper nanoparticles; the thin-film layer prepared from the porous nanoparticles is attached to the outer surface of a flake base layer; a copper whisker layer is attached to the surface of the thin-film layer prepared from the porous copper nanoparticles; the thickness of the base layer is 100-500 microns; the thickness of the porous nano thin-film layer is 100-200 microns; and the thickness of the copper whisker layer is about 100-500 microns. According to the electrode with the structure, the reaction activity area is effectively increased; mass transfer of a reactant is improved; and reduction of reaction polarization resistance and mass transfer polarization resistance is facilitated, so that the conversion efficiency of CO2 is improved; the selectivity of an ERC reaction product can be improved by regulating and controlling the active substances with different shapes; the stability of Cu metal can be improved by the structure; and the service lifetime of an ERC reaction catalyst is prolonged.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Negative electrode for electroreduction of carbon dioxide and preparation method thereof

The invention relates to a negative electrode for electroreduction of carbon dioxide and a preparation method thereof. The negative electrode is such structured that carbon paper, carbon felt or carbon cloth is used as a substrate; one side surface of the substrate is successively bonded with two catalysis layers of different pore sizes; and the negative electrode is successively composed of the substrate, a large-size heteroatom-doped nanocarbon layer and a small-size metal-and-heteroatom-doped nanocarbon layer. The large-size catalysis layer is favorable for transmission of CO2 and productsand reduction of mass transfer resistance; and the small-size heteroatom-doped nanocarbon layer is beneficial for improving the reaction active specific surface area of a catalyst and enhancing the reaction activity of the catalyst. As the negative electrode with such a structure is applied to ERC, the area of a three-phase electrochemical reaction interface is greatly broadened, the utilization rate of the catalyst is increased, and mass transfer polarization of an electrolytic bath is reduced; and in virtue of adsorptivity or formation of chemical bonds between the negative electrode and products of electroreduction of carbon dioxide, the selectivity and conversion rate of an assigned reduction product can be improved, and high selectivity of the reduction product is realized.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Aqueous neutral organic flow battery

The aqueous neutral organic flow battery comprises a single battery or an electric pile consisting of more than two single batteries. Each single battery comprises a positive electrode, a diaphragm and a negative electrode. A positive electrolytic solution is introduced between the positive electrode and the diaphragm, and a negative electrolytic solution is introduced between the negative electrode and the diaphragm. The positive electrolyte in the positive electrolytic solution is a complexing agent of bromine salt and bromine; the negative electrolyte in the negative electrolytic solution is viologen or a viologen derivative; or electrolytes in the positive electrolytic solution and the negative electrolytic solution are bromine salt, a bromine complexing agent and viologen or viologenderivatives; and water is used as a solvent. The positive electrode is subjected to bromine ion redox reaction, the negative electrode is subjected to viologen single-electron or double-electron redoxreaction, and no metal element participates in electrochemical reaction. The positive electrolytic solution and the negative electrolytic solution are both neutral, and the diaphragm between the positive electrode and the negative electrode of the battery adopts a porous membrane. The battery has the characteristics of high energy density, low cost, sustainability and the like.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Proton membrane for PEM water electrolysis and CCM integrated preparation process and equipment

The invention discloses a PEM water electrolysis proton membrane and CCM integrated preparation process and equipment, the equipment adopts a combination of multiple nozzles and a slit type coating head, the multiple nozzles can independently spray different components of a catalyst layer multi-component composite slurry within an ultra-short time, the spraying rate and atomization degree of the different components are accurately controlled, and the production efficiency is improved. The problem of poor dispersibility of different catalysts and binders in the catalyst slurry in the same solution is solved; the preparation process comprises the following steps of: sequentially compounding the base membrane pretreatment layer, the catalyst layer 1, the functional layer 1, the composite reinforced membrane, the functional layer 2, the catalyst layer 2 and the like on the substrate to realize the integrated preparation of the PEM water electrolysis composite reinforced membrane and the CCM catalyst layer; and finally, the PEM membrane electrode has relatively low surface resistance, relatively high conductivity, mass transfer rate and chemical durability, so that the cost of PEM electrolyzed water is reduced, and the service life is prolonged.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Direct methanol fuel cell with homogeneous assisted catalysis and porous carbon-supported platinum catalysis

ActiveCN110571464AEvenly distributedGuaranteed mass transfer needsCell electrodesFuel cellsPorous carbonCatalytic effect
The invention relates to a fuel cell technology and aims to provide a direct methanol fuel cell with homogeneous assisted catalysis and porous carbon-supported platinum catalysis. According to preparation of methanol fuel in the battery, 1 liter of sulfuric acid with a mass concentration of 5 to 10 wt% is taken and heated to 50 to 70 DEG C; 0.1 to 1 mol of V2O5 is added, reacting under stirring for 5 h is carried out, and after filtering, a (VO2)2SO4 sulfuric acid solution is obtained; after cooling to room temperature, 1 to 4 liters of methanol aqueous solution with a mass concentration of 50to 60 wt% are added, (VO2)2SO4 changes to (VO)SO4 through uniform mixing, and modified methanol fuel containing a cocatalyst (VO)SO4 is obtained. Oxidation and carbon monoxide poisoning on the surface of a platinum catalyst in the electrochemical oxidation process of methanol are avoided through the assisted catalytic effect of VO<2+> ions; and the performance of direct methanol fuel cell is improved through the synergy of the high activity of carbon-loaded platinum and the assisted catalytic effect of liquid phase VO<2+> ions. (VO)SO4 can be recycled, the cost can be effectively reduced, andthe application and the popularization of methanol fuel cells are facilitated.
Owner:ZHEJIANG UNIV

Novel single-layer gas diffusion layer for fuel cell and preparation method and application of novel single-layer gas diffusion layer

The invention relates to a single-layer gas diffusion layer for a fuel cell and a preparation method and application of the single-layer gas diffusion layer, the gas diffusion layer only comprises a microporous layer, the microporous layer takes a carbon material, a hydrophobic binder and a pore-forming agent as raw materials, carbon-free paper and a self-supporting microporous layer are prepared through dry-method mold pressing, and the single-layer gas diffusion layer has good hydrophobicity, gas permeability and conductivity, and the resistance of water discharge can be reduced, so that cathode flooding is relieved. The dry-method preparation avoids the defect that cracks are generated on the surface due to solvent volatilization in a wet method, so that water logging caused by water gathering at the cracks is avoided. According to the prepared carbon-free paper, the thickness and porosity of the self-supporting microporous layer are controllable, the preparation process is simple, and conditions are mild. When the carbon-free paper and the self-supporting microporous layer prepared by the method are used as gas diffusion layers of fuel cells, relatively good electrochemical performance is achieved. The novel single-layer gas diffusion layer has wide application value in the field of fuel cells.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

A platinum-based catalyst with porous carbon nanofibers as a carrier with high catalytic activity and high durability and its preparation method

ActiveCN104752736BHigh activityIncrease the rate of the oxygen reduction reactionCell electrodesSolid electrolyte fuel cellsFiberPorous carbon
The invention relates to a platinum-based catalyst having high catalytic activity and high durability and adopting porous carbon nano fibers as a carrier and a preparation method of the platinum-based catalyst, and particularly relates to a method of improving the catalytic activity and durability of a catalyst adopting a loose three-dimensional netted through structure composed of the porous carbon nano fibers as a carrier to load nano platinum particles and an application of the catalyst in a proton exchanging membrane fuel cell. According to the platinum-based catalyst adopting the porous carbon nano fibers as the carrier, the porous carbon nano fibers which are used as the carrier form a loose three-dimensional netted through structure, and metal platinum is loaded on the porous carbon nano fibers; the catalytic activity of the platinum-based catalyst adopting the porous carbon nano fibers as the carrier is as follows: the peak potential is 100mA ahead of that of a platinum-carbon catalyst, and the utilization rate of platinum reaches 80 percent; the durability of the platinum-based catalyst adopting the porous carbon nano fibers as the carrier is as follows: the ECSA retention rate after the fuel cell is circulated for 1000 times can reach 50 percent.
Owner:DONGHUA UNIV

Direct Methanol Fuel Cell with Homogeneous Assisted Catalysis and Platinum Catalysis on Porous Carbon

The invention relates to a fuel cell technology and aims to provide a direct methanol fuel cell with homogeneous assisted catalysis and porous carbon-supported platinum catalysis. According to preparation of methanol fuel in the battery, 1 liter of sulfuric acid with a mass concentration of 5 to 10 wt% is taken and heated to 50 to 70 DEG C; 0.1 to 1 mol of V2O5 is added, reacting under stirring for 5 h is carried out, and after filtering, a (VO2)2SO4 sulfuric acid solution is obtained; after cooling to room temperature, 1 to 4 liters of methanol aqueous solution with a mass concentration of 50to 60 wt% are added, (VO2)2SO4 changes to (VO)SO4 through uniform mixing, and modified methanol fuel containing a cocatalyst (VO)SO4 is obtained. Oxidation and carbon monoxide poisoning on the surface of a platinum catalyst in the electrochemical oxidation process of methanol are avoided through the assisted catalytic effect of VO<2+> ions; and the performance of direct methanol fuel cell is improved through the synergy of the high activity of carbon-loaded platinum and the assisted catalytic effect of liquid phase VO<2+> ions. (VO)SO4 can be recycled, the cost can be effectively reduced, andthe application and the popularization of methanol fuel cells are facilitated.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products