Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1215 results about "Methanol fuel" patented technology

Methanol fuel is an alternative biofuel for internal combustion and other engines, either in combination with gasoline or independently. Methanol is less expensive to produce sustainably than ethanol fuel, although it is generally more toxic and has lower energy density. For optimizing engine performance and fuel availability, however, a blend of ethanol, methanol and petroleum is likely to be preferable to using any of these alone. Methanol may be made from hydrocarbon or renewable resources, in particular natural gas and biomass respectively. It can also be synthesized from CO₂ (carbon dioxide) and hydrogen. Methanol fuel is currently used by racing cars in many countries but has not seen widespread use otherwise.

Island-shaped porous tri-metal nano rod with gold core/silver-platinum alloy shell structure and method for preparing same

InactiveCN101623762AEasy to achieve topographyEasy to achieve component contentCatalyst activation/preparationMetal/metal-oxides/metal-hydroxide catalystsPlatinumMethanol fuel
The invention relates to an island-shaped porous tri-metal nano rod with a gold core/silver-platinum alloy shell structure, which adopts the gold core/silver-platinum alloy shell structure formed by a cylindrical gold nano rod core and an island-shaped porous silver-platinum alloy shell coated on the outer surface of the cylindrical gold nano rod core. The preparation method comprises the following steps of preparation of gold crystal seed solution, preparation and purification of gold nano rod solution, preparation of solution of a platinum coated gold core/platinum shell nano rod, preparation of island-shaped porous tri-metal nano rod with the gold core/silver-platinum alloy shell structure and the like. The tri-metal nano rod has the advantages of stronger ability of catalyzing the methanol oxidation, stronger CO poisoning resistant ability, lower cost and the like, and can be widely used for preparing a methanol fuel battery catalyst; and the preparation method has the advantages of simplicity, low consumption, environmental protection, and high efficiency, and by the method, the island-shaped porous tri-metal nano rod with the gold core/silver-platinum alloy shell structure with high yield and narrow size distribution can be obtained.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA

Oxygen reduction catalyst prepared from grapheme modified by macrocyclic compound, and preparation method thereof

The invention discloses an oxygen reduction catalyst prepared from grapheme modified by a macrocyclic compound, and a preparation method thereof. The grapheme modified by a macrocyclic compound is used as the catalyst and is used for catalyzing the oxygen reduction of batteries under acidic, neutral and alkaline conditions. The catalyst can efficiently reduce oxygen in a solution, the direct 4e process can be realized, the spike potential of the oxygen reduction under alkaline condition can reach 0.1 V (vs. Ag/AgCl), and the stability is high. The catalyst has simple preparation process, low cost and good catalytic activity. The preparation method of the catalyst comprises the following steps of: firstly, conducting ultrasonic dispersion after proportionally mixing grapheme and the macrocyclic compound; then, filtering; and finally, drying to obtain the catalyst. In addition, the catalyst has great anti-poisoning effect on carbon monoxide, methanol, formaldehyde, glucose and the like which can poison a platinum catalyst. The oxygen reduction catalyst can be applied to the fields of proton exchange membrane fuel batteries, direct methanol fuel batteries, metal-air battery cathode materials and the like.
Owner:SOUTH CHINA UNIV OF TECH

Preparation of carbon nanotube material embedded with quantum-dot modified metal organic framework

The invention provides preparation of a carbon nanotube material embedded with a quantum-dot modified metal organic framework. The preparation comprises the following steps of firstly, adding a certain amount of powder quantum dots to a formed metal organic framework precursor solvent so that the quantum dots of which the diameters are matched with the sizes of pore passages are embedded into the pore passages of the formed metal organic framework; secondly, uniformly mixing the obtained quantum-dot modified metal organic framework and melamine powder, and performing high-temperature processing to obtain a composite material (QD/UMCM-1@CNT) in a carbon nanotube embedded with the quantum-dot modified metal organic framework; and finally, enabling Pt to be loaded on a surface of the composite material carbon nanotube (Pt/QD/UMCM-1@CNT) by microwave radiation heating to be used as a positive electrode catalyst of a methanol fuel cell. Compared with a traditional hydrothermal method for synthesis of the carbon nanotube, the quantum-dot modified metal organic framework obtained by high-temperature processing is embedded into the composite material in the carbon nanotube, the structural aspects such as the length and the diameter of the carbon nanotube are more consistent, and a catalyst substrate with a unified structure is easier to form.
Owner:QINGDAO UNIV

High-electric conductivity aromatic polymer ionic liquid diaphragm material and preparation method thereof

The invention discloses a high-electric conductivity aromatic polymer ionic liquid diaphragm material and a preparation method thereof. The high-conductivity aromatic polymer ionic liquid diaphragm material comprises an cation and an anion, wherein the cation is a composite cation formed by combining at least one ion of hydrogen ions or metal ions with organic molecules; and the anion is a fluorine-contained sulfonic acid anion or a fluorine-contained sulfimide anion which is connected to an aromatic benzene ring-contained polymer side chain. Compared with the prior art, the polymer ionic liquid diaphragm material of the invention has the advantages of difficult loss of ionic liquid, electric conductivity without depending on water, penetration resistance of OH-anion, methanol or vanadium ions, and the like, can form a stable ion channel which has high ionic activity, high chemical stability, low ion activating energy and easy adsorption of organic polar solvents and is an ideal diaphragm material which can be applied to various fields of lithium ion batteries, secondary lithium ion batteries, methanol fuel batteries, liquid flow batteries, electrodialysis water treatment, atomic energy industry and analysis, catalytic synthesis, chlor-alkali industry, and the like.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

PtRu/graphene nano electro-catalyst and preparation method thereof

The invention discloses a preparation method of PtRu/graphene nano electro-catalyst, comprising the following steps of: ultrasonically dispersing oxidized nano graphite sheets into liquid polylol; then adding a chloroplatinic acid solution and a sodium acetate solution, sufficiently mixing, wherein the content of the oxidized nano graphite sheets contained in a mixture is 0.3-1.1 g/L, the concentration of chloroplatinic acid is 0.0004-0.002 mol/L, the concentration of ruthenium chloride is 0.0004-0.0013 mol/L, and the concentration of sodium acetate is 0.005-0.027 mol/L; transferring the mixture to a microwave hydro-thermal reaction kettle for microwave hydro-thermal reaction for 5-10 minutes; and filtering, washing and drying to obtain the PtRu/graphene nano electro-catalyst, wherein the mass fraction of a PtRu alloy contained in the PtRu/graphene nano electro-catalyst is 20-40 percent, the mass fraction of graphene is 80-60 percent, the atomic ratio of the PtRu alloy is Pt:Ru=1:2-1.5:1, and the liquid polylol is propanetriol or glycol. The preparation method has energy saving, fastness, simple process, and the like; and in addition, the prepared PtRu/graphene nano electro-catalyst has good electrocatalysis property for the oxidation of methanol and ethanol and is widely used as anode catalysts of direct methanol fuel cells.
Owner:ZHEJIANG UNIV

Three-dimensional nitrogen-doped graphene platinoid-loaded composite electro-catalyst and preparation method thereof

The invention discloses a three-dimensional nitrogen-doped graphene platinoid-loaded composite electro-catalyst. A preparation method comprises the following steps of ultrasonically dispersing graphene oxide sheet in an aqueous solution, adding urea and soluble nickel salt for full and uniform mixing, transferring the mixture into a hydrothermal reaction kettle for reaction, performing freeze-drying to obtain three-dimensional nitrogen-doped graphene, dissolving the three-dimensional nitrogen-doped graphene in ethylene glycol, sequentially adding chloroplatinic acid, copper chloride dehydrate and glutamic acid, and performing microwave reaction to obtain the catalyst. The method has the characteristics of that energy is saved, the speed is high, and the operation is simple; the raw materials are easy to obtain, the yield is high, the capability of platinum in the direct electro-catalytic oxidation of methanol under an acidic condition can be remarkably improved, peak current is 3 to 4 times than that of a commercial carbon black platinum-loaded electro-catalyst and a commercial carbon black platinum-ruthenium-loaded electro-catalyst, and the prepared catalyst is widely applied to a methanol fuel cell.
Owner:GUANGXI NORMAL UNIV

Preparation method of membrane electrode of direct methanol fuel cell

The invention relates to a preparation method of the membrane electrode of a direct methanol fuel cell. The method comprises the following steps: an electrostatic spinning technology is adopted to construct a nano-fiber network structure thin membrane mixed by active carbon powder and Nafion resin; a precious metal nano-catalyst is deposited on the surface of the manufactured nano-fiber network structure thin membrane, so that a cathode catalyst layer thin membrane and an anode catalyst layer thin membrane are manufactured respectively; or the mixture of the precious metal nano-catalyst and the Nafion resin is taken as raw materials to directly construct the cathode catalyst layer thin membrane and the anode catalyst layer thin membrane through the electrostatic spinning technology; a cathode gas diffusion layer, the anode catalyst layer thin membrane, a Nafion membrane, the cathode catalyst layer thin membrane and a cathode gas diffusion layer are hot-pressed finally, so that the aggregation of the membrane electrode of the direct methanol fuel cell is manufactured; the membrane electrode with a nano-fiber three-dimensional network structure is constructed through the electrostatic spinning technology, so that the maximization of the three-phase reaction interface of the membrane electrode is achieved, and the improvement of electrocatalytic activity, mass-transfer efficiency and utilization efficiency of the catalyst is achieved.
Owner:SHANGHAI ADVANCED RES INST CHINESE ACADEMY OF SCI

Passive water management techniques in direct methanol fuel cells

Passive water management techniques are provided in an air-breathing direct oxidation fuel cell system. A highly hydrophobic component with sub-micrometer wide pores is laminated to the catalyzed membrane electrolyte on the cathode side. This component blocks liquid water from traveling out of the cathode and instead causes the water to be driven through the polymer membrane electrolyte to the cell anode. The air-breathing direct oxidation fuel cell also includes a layer of cathode backing and additional cathode filter components on an exterior aspect of the cell cathode which lessen the water vapor escape rate from the cell cathode. The combination of the well laminated hydrophobic microporous layer, the thicker backing and the added filter layer, together defines a cathode structure of unique water management capacity, that enables to operate a DMFC with direct, controlled rate supply of neat (100%) methanol, without the need for any external supply or pumping of water. The cell anode is provided with a hydrophilic backing layer. When the water is driven through the polymer membrane electrolyte from the cell cathode to the cell anode chamber, it is available for the anodic reaction, and any excess water is carried out along CO2 ventilation channels to the outside environment.
Owner:MTI MICROFUEL CELLS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products