Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

40 results about "Acetylenic Compounds" patented technology

Method for in-situ formation of metathesis catalysts

Synthetic methods for the in-situ formation of olefin metathesis catalysts are disclosed, as well as the use of such catalysts in metathesis reactions of olefins and olefin compounds. In one aspect, a method is provided for synthesizing an organometallic compound of the formula
comprising contacting a precursor compound of the formula (X1X2MLjL1kL3m)i with an acetylenic compound comprising a chelating moiety, optionally, in the presence of a neutral electron donor, wherein M is a Group 8 transition metal, L, L1, L2, and L3 are neutral electron donors, X1 and X2 are anionic ligands, j is 1, 2, or 3; k is zero, 1, or 2; m is zero or 1; n is 1 or 2; and i is an integer; with the proviso that k is zero when the precursor compound is contacted with the acetylenic compound in the presence of the neutral electron donor, and R1 and R2 are independently selected from hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups, wherein R1 and R2 are linked and together form one or more cyclic groups, R2 and L2 are linked and together form one or more cyclic groups, and any other two or more of X1, X2, L1, L2, L3, R1, and R2 can be taken together to form one or more cyclic groups. The invention has utility in the fields of catalysis, organic synthesis, polymer chemistry, and industrial and fine chemicals chemistry.
Owner:MATERIA

A method of using alkynes to synthesize palladium catalysts

The invention discloses a method for synthesizing a palladium catalyst by utilizing alkyne compounds and relates to a synthesizing method of a palladium catalyst. The method comprises the following steps: adding a Pd precursor in a solvent; then adding a carrier and an alkyne compound sequentially to have a reaction; at the end of the reaction, separating, washing and drying the obtained product, thus obtaining the palladium catalyst, wherein the obtained palladium catalyst is a polymerization-alkyne-loaded palladium catalyst. Alkyne is subjected to polymerization reaction in the presence of Pd; meanwhile, Pd also can be coordinated with the generated polymer, thereby obtaining a polymerization-alkyne-immobilized Pd catalyst. Meanwhile, in order to enable the obtained catalyst to be more practical, the catalyst can be adsorbed on the carrier in situ as long as a proper amount of carrier is added directly in the reaction solution, and further an immobilized catalyst is obtained. The obtained product is easy to separate and process, and is stable to air and water. The method is simple and feasible; raw materials are easily available and are easy to synthesize in a large scale. Meanwhile, the catalyst shows favorable catalytic activity and has a wide actual application prospect.
Owner:厦门嘉氢科技有限公司

Azadibenzocyclooctine compounds and preparation methods thereof

The invention discloses a heterocyclic nitrogen-dibenz-cyclooctyne class compound and a preparation method of the heterocyclic nitrogen-dibenz-cyclooctyne class compound, and belongs to the field of organic chemical synthesis. The structural general formula of the compound is shown in the formula I. 5-dibenz cycloheptene ketene serves as a starting material, final end product heterocyclic nitrogen-dibenz-cyclooctyne hydrochloride is obtained through the reactions of oximation, Beckmann rearrangement, amid reduction, protection, addition, debromination, deprotection and the like, and the total yield is higher than 73.6%. The raw material is easy to obtain, after-treatment is convenient and easy to operate, and the total yield is high. The heterocyclic nitrogen-dibenz-cyclooctyne class compound without a substituent on nitrogen atoms is synthezied for the first time, a novel method can be provided for synthesizing a heterocyclic nitrogen-dibenz-cyclooctyne class compound with different substituents on the nitrogen atoms, especially for synthesizing multiple heterocyclic nitrogen-dibenz-cyclooctyne class compounds with the different substituents on the nitrogen atoms, wherein the heterocyclic nitrogen-dibenz-cyclooctyne class compounds are not easy to prepare through other methods, a product of the heterocyclic nitrogen-dibenz-cyclooctyne class compound can serve as the raw material, and H on nitrogen is replaced by the needed R base.
Owner:CHENGDU LIKAI CHIRAL TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products