Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

408 results about "Transcription Factor Gene" patented technology

Genes that code for transcription factors.

Generation of human embryonc stem-like cells using intronic RNA

ActiveUS20080293143A1Stable and relatively long-term effectDelivery stabilityOther foreign material introduction processesElectrical/wave energy microorganism treatmentReprogrammingMammal
This invention generally relates to a method for developing, generating and selecting human embryonic stem (hES)-like pluripotent cells using transgenic expression of intronic microRNA-like RNA agents. More particularly, the present invention relates to a method and composition for generating a non-naturally occurring intron and its intronic components capable of being processed into mir-302-like RNA molecules in mammalian cells and thus inducing certain specific gene silencing effects on differentiation-related and fate-determinant genes of the cells, resulting in reprogramming the cells into a pluripotent embryonic stem (ES)-cell-like state. The ES-like cells so obtained are strongly express hES cell markers, such as Oct3/4, SSEA-3 and SSEA-4, and can be guided into various tissue cell types by treating certain hormones and/or growth factors under a feeder-free cell culture condition in vitro, which may be used for transplantation and gene therapies. Therefore, the present invention offers a simple, effective and safe gene manipulation approach for not only reprogramming somatic cells into ES-like pluripotent cells but also facilitating the maintenance of pluripotent and renewal properties of ES cells under a feeder-free cell culture condition, preventing the tedious retroviral insertion of four large transcription factor genes into one single cell as used in the previous iPS methods.
Owner:MELLO BIOTECH +1

Maize water-logging tolerance-related transcription factor gene zm-bRLZ, molecular marker and application

The invention belongs to the technical field of plant gene engineering, and relates to clone and application of a maize water-logging tolerance-related transcription factor gene zm-bRLZ. The nucleotide sequence of the gene is shown as SEQ ID No. 1, and the gene has a total length of 4,027bp and comprises 6 exons. The cDNA sequence of the gene is shown as SEQ ID No. 2, and 282 amino acids are encoded on the gene. In flooding stress, the expression of the gene in maize inbred line Hz32 seedling roots is up-regulated and the expression level of the gene in the Mo17 is kept unchanged. The in-vitro combination of a gene protein product and an antidiuretic hormone (ADH) promoter anaerobic response factor shows that the zm-bRLZ gene has a regulation and control effect on an anaerobic induced gene. A pair of cleaved amplified polymorphic sequence (CAPS) markers is developed by utilizing zm-bRLZ gene sequence difference of the maize water-logging tolerance inbred line Hz32 and high-sensitivity K12. The gene is positioned at a water-logging tolerance quantitative trait locus (QTL) peak part of 9.04bin by utilizing K12*Hz32 F2 group. A candidate gene correlation analysis proves that a zm-bRLZ gene promoter region and a plurality of single nucleotide polymorphism (SNP) sites at a 3'-untranslated region (3'-UTR) are all obviously associated with a plurality of water-logging tolerance indexes.
Owner:HUAZHONG AGRI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products