Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

60results about How to "Reduced injection efficiency" patented technology

Groove gate VDMOS device integrated with Schottky diode

The invention discloses a groove gate VDMOS device integrated with a Schottky diode and belongs to the technical field of semiconductor devices. According to the groove gate VDMOS device integrated with the Schottky diode, an additional structure composed of a piece of Schottky junction metal and a body electrode conductive material is additionally arranged on each of drift regions on the two sides of a groove gate structure of a conventional groove gate VDMOS device, the upper portion of each piece of Schottky junction metal is in contact with source electrode metal, the lower portion of each piece of Schottky junction metal is in contact with a corresponding body electrode conductive material, and the lower surface and the lateral sides of the each piece Schottky junction metal are in contact with a corresponding drift region to form a Schottky junction; dielectric layers are arranged between the lateral sides of each body electrode conductive material and a corresponding drift region and between the bottom surface of each body electrode conductive material and the corresponding drift region. Compared with a traditional groove gate VDMOS device with the same size, the groove gate VDMOS device integrated with the Schottky diode has the advantages that due to the fact that higher drift region dosage concentration is adopted under the condition of same puncture voltage, turn-on resistance is reduced obviously, and the reverse recovery property of the diode is improved obviously.
Owner:UNIV OF ELECTRONIC SCI & TECH OF CHINA +1

SiC power device

ActiveCN110767753ASmall pressure dropEliminate minority carrier injection effectDiodeHeterojunction diodeMinority carrier injection
The invention belongs to the field of power semiconductors, and particularly provides a SiC power device. The SiC power device comprises a SiC MOSFET and a SiC IGBT. For the SiC MOSFET device integrated with a PN junction body diode, the reverse recovery charge and related loss of the body diode can be greatly reduced, the reverse recovery peak current is reduced, and the EMI noise is reduced; forthe SiC MOSFET device integrated with an N-type Schottky diode or an integrated heterojunction diode, the voltage drop during reverse conduction of the MOSFET can be reduced, and the minority carrierinjection effect is eliminated, so that the conduction loss and reverse recovery loss of the diode are reduced; for the reverse conduction type SiC IGBT device integrated with the PN junction body diode, the reverse recovery charge and related loss of the body diode can be greatly reduced, the reverse recovery peak current is reduced, and the EMI noise is reduced; and moreover, for the reverse conduction type SiC IGBT device integrated with the N-type Schottky diode or the heterojunction diode, the voltage drop during reverse conduction of the reverse conduction IGBT can be reduced, the minority carrier injection effect is eliminated, and the conduction loss and reverse recovery loss of the diode are reduced.
Owner:UNIV OF ELECTRONIC SCI & TECH OF CHINA

Method for implementing well division construction in super-high density slot type power device design

The invention relates to a novel method for achieving a Split Well structure in the design of an ultrahigh-density groove-type power device, and is effective in solving the problem that the Split Well structure (21) is incompatible with the ultrahigh-density design. Based on the impurity compensation theory, the method is characterized in that the high-energy N-type ion injection (18) and the quick annealing are carried out through a contact hole (22) so as to ensure that the Split Well structure (21) is formed at the bottom part in the middle of a well area (7). With the contact hole (22) over-etched below a silicon surface (23), the process ensures that the energy demand for sequential N-type ion injections is effectively reduced, thereby reducing the probability of injection damage to the well area (7) with less leakage sources that cause current to leak out from the device. Moreover, a higher integrated level can be attained with the Split Well structure 21 achieved in Z direction. The novel Split Well technology leads to a substantial improvement on the design of the device which ensures the long-standing reliability of the device as well as the workability of the on-resistance of the device, the firmness of the device and the reverse recovery characteristic of the body diode of the device.
Owner:成都方舟微电子有限公司

Silicon-on-insulator transverse insulated gate bipolar transistor with low saturation current

The invention discloses a silicon-on-insulator transverse insulated gate bipolar transistor with low saturation current. The According to the semiconductor is provided with:, a semiconductor substrate; wherein a buried oxide layer is arranged on the a P-type substrate; an N-type drift region is arranged above on the buried oxide layer; , wherein a P-type body region, a field oxide layer and a collector region are arranged on the N-type drift regionsubstrate; connected P traps are arranged in the P-type body region; a P-type emitter region is arranged in the P traps; an N-type emitter region isarranged on the P-type emitter region; an oxide layer is arranged above on the P-type body region, the P traps, the P-type emitter region, the field oxide layer and the collector region; a polysilicon gate is arranged between the field oxide layer and the oxide layer and extends to the upper part of the P traps; a gate oxide layer is arranged among the P traps, the P-type body region and the polysilicon gate,; wherein the collector region comprises a heavily-doped N-type collector region and a lightly-doped N-type collector region which are arranged in the N-type drift region and isolated bythe N-type drift region, a lightly-doped P-type collector region is arranged in the heavily-doped N-type collector region, and a heavily-doped P-type collector region is arranged in the lightly-dopedN-type collector region.
Owner:SOUTHEAST UNIV

A quantum dot light-emitting diode based on corona discharge interface modification and its preparation method

The invention discloses a quantum dot light-emitting diode based on corona discharge interface modification and a preparation method thereof. The quantum dot light-emitting diode comprises an anode, a cathode and a quantum dot light-emitting layer arranged between the anode and the cathode. The quantum dots A hole transport layer is arranged between the light-emitting layer and the anode, a hole injection layer is arranged between the hole transport layer and the anode, an electron transport layer is arranged between the quantum dot light-emitting layer and the cathode, and the quantum dots The surface of the light-emitting layer close to the electron transport layer is provided with a negatively charged ion layer or a positively charged ion layer generated by corona discharge. The interface regulation method proposed in the present invention can effectively passivate the defects at the QDs / ZnO interface, thereby greatly increasing the radiative recombination efficiency of electron-holes at low brightness. The present invention provides a simple, cost-effective and novel method that does not complicate device fabrication and device structure to balance the carrier density of the light-emitting layer to improve the efficiency of the QLED device.
Owner:HENAN INST OF ENG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products