Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

52 results about "Magnetic phase transition" patented technology

It is shown that the magnetic phase transition occurs as a result of a signchange in the proper combination of the exchange parameters. The transition may be influenced by the variation of the pressure and the magnetic field.

Magnetic phase transition microcapsule and preparation method thereof

The invention discloses a magnetic phase transition microcapsule and a preparation method thereof. Nanometer magnetic powder is filled in a microcapsule material to form a shell, and a core material is wrapped in the shell. The magnetic phase transition microcapsule is prepared by the following steps: firstly, adding urea to a formaldehyde solution to dissolve or adding melamine to the formaldehyde solution, or adding the urea to the formaldehyde solution and adding melamine after fully dissolving the urea; then, reacting under stirring at a constant temperature to obtain a prepolymer solution; adding the nanometer magnetic powder to the prepolymer solution and dispersing the solution under ultrasound; dissolving an emulsifying agent in the water, adding an organic phase transition material and cutting and emulsifying the organic phase transition material at a high speed to prepare an emulsion; and uniformly mixing the emulsion and the prepolymer solution after ultrasonic dispersion and reacting under stirring at the constant temperature to obtain the magnetic phase transition microcapsule. The magnetic phase transition microcapsule has magnetism and can reach specific parts under the guide of an external magnetic field while the magnetic phase transition microcapsule is applied to a latent heat type functional fluid so as to control the flow of the fluid.
Owner:NANJING UNIV OF SCI & TECH

Magnetic phase-change microcapsule for performing thermal protection on normal structure in thermal physical therapy

The invention discloses a magnetic phase-change microcapsule for performing thermal protection on a normal structure in thermal physical therapy. The magnetic phase-change microcapsule is a spherical microcapsule which is composed of a phase-change material (1), magnetic particles (2) and a liposome shell (3), and the mean diameter thereof is 1nm-1mm. In the invention, the phase-change material (1) is solid-liquid or / and liquid-solid phase-change material with high phase change heat and the phase change temperature at -10-0 DEG C or 38-100 DEG C according to different thermal physical therapeutic processes such as thermal therapy, cold therapy, cryosurgery or cold-heat alternating therapy and the like; the magnetic particles (2) are magnetic micro / nano-particles or magnetotactic bacteria; and a liposome is taken as a capsule carrier for lowering toxicity of the material and protecting an encapsulated material. The invention provides a safe and effective thermal protection material with novel concept. In the invention, the magnetic phase-change microcapsule can be gathered into a target organ with blood circulation under the action of an applied magnetic field; phase-change latent heat and low thermal conductivity of the phase-change material are adopted to carry out thermal protection on the normal structure; and the material is widely applied to thermal physical therapy, and the application method thereof is simple, feasible and reliable.
Owner:CHONGQING UNIV

MnCoGe-based magnetic material with giant piezocaloric effect as well as preparation method and application thereof

The invention provides a MnCoGe-based magnetic material with a giant piezocaloric effect as well as a preparation method and application thereof. A chemical general formula of the MnCoGe-based magnetic material is MnCoGe1-xInx, wherein x is more than 0 and less than or equal to 0.03, and the MnCoGe-based magnetic material has a Ni2In type hexagonal structure. The MnCoGe-based magnetic material has the characteristic that martensitic structural phase transition and magnetic phase transition are coupled, and coupling is carried out at the temperature close to room temperature. The MnCoGe-based magnetic material shows an adverse piezocaloric effect under the action of pressure, the amplitude of entropy change under the action of pressure of 3kbar and at the temperature close to room temperature is at least 50J/(Kg.K). Along with change of In content, the magnetic structure coupling temperature Tmstru of the material is adjustable at a wide temperature region close to room temperature, so that the giant piezocaloric effect appears in the wide temperature region close to room temperature. The MnCoGe-based magnetic material has the advantages of simple preparation method, green and environmental-friendly raw materials, high efficiency and energy conservation.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Method for even hydrogenation of NaZn13 structured rare earth-iron cobalt silicon material

InactiveCN101817078AShort hydrogenation timeHomogeneous hydrogenationInorganic material magnetismRare earthCrystal structure
The invention discloses a method for the even hydrogenation of NaZn13 structured rare earth-iron cobalt silicon material, which comprises the step: putting rare earth-iron cobalt silicon compound having NaZn13 structure in a hydrogenation furnace for hydrogenation thermal treatment for 2 to 4 hours at the temperature ranging from 400 to 600 DEG C. The method can also comprise the step of putting the rare earth-iron cobalt silicon compound having NaZn13 structure in the hydrogenation furnace for activation once or many times and then for hydrogenation thermal treatment at the temperature ranging from 80 to 600 DEG C for 2 to 4 hours so as to result in the finished product. The rare earth-iron cobalt silicon hybride obtained after hydrogenation according to the preparation method has a crystal structure taking the NaZn13 structure as main phase, which is identical to the crystal structure of original rare earth-iron cobalt silicon compound. The method has the advantages that: the hydrogenation time is short, the rare earth-iron cobalt silicon compound can be certainly subject to even hydrogenation, and all the hybrides of the resultant rare earth-iron cobalt silicon compound have only one magnetic phase transition temperature. Thus, outstanding refrigerating effect of the hybrides of the rare earth-iron cobalt silicon compound during the use thereof in a magnetic refrigerator can be ensured.
Owner:UNIV OF SCI & TECH BEIJING

A kind of mncoge-based magnetic material with giant barocaloric effect and its preparation method and application

The invention provides a MnCoGe-based magnetic material with a giant piezocaloric effect as well as a preparation method and application thereof. A chemical general formula of the MnCoGe-based magnetic material is MnCoGe1-xInx, wherein x is more than 0 and less than or equal to 0.03, and the MnCoGe-based magnetic material has a Ni2In type hexagonal structure. The MnCoGe-based magnetic material has the characteristic that martensitic structural phase transition and magnetic phase transition are coupled, and coupling is carried out at the temperature close to room temperature. The MnCoGe-based magnetic material shows an adverse piezocaloric effect under the action of pressure, the amplitude of entropy change under the action of pressure of 3kbar and at the temperature close to room temperature is at least 50J / (Kg.K). Along with change of In content, the magnetic structure coupling temperature Tmstru of the material is adjustable at a wide temperature region close to room temperature, so that the giant piezocaloric effect appears in the wide temperature region close to room temperature. The MnCoGe-based magnetic material has the advantages of simple preparation method, green and environmental-friendly raw materials, high efficiency and energy conservation.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Magnetic phase-change microcapsule for performing thermal protection on normal structure in thermal physical therapy

The invention discloses a magnetic phase-change microcapsule for performing thermal protection on a normal structure in thermal physical therapy. The magnetic phase-change microcapsule is a spherical microcapsule which is composed of a phase-change material (1), magnetic particles (2) and a liposome shell (3), and the mean diameter thereof is 1nm-1mm. In the invention, the phase-change material (1) is solid-liquid or / and liquid-solid phase-change material with high phase change heat and the phase change temperature at -10-0 DEG C or 38-100 DEG C according to different thermal physical therapeutic processes such as thermal therapy, cold therapy, cryosurgery or cold-heat alternating therapy and the like; the magnetic particles (2) are magnetic micro / nano-particles or magnetotactic bacteria;and a liposome is taken as a capsule carrier for lowering toxicity of the material and protecting an encapsulated material. The invention provides a safe and effective thermal protection material with novel concept. In the invention, the magnetic phase-change microcapsule can be gathered into a target organ with blood circulation under the action of an applied magnetic field; phase-change latent heat and low thermal conductivity of the phase-change material are adopted to carry out thermal protection on the normal structure; and the material is widely applied to thermal physical therapy, and the application method thereof is simple, feasible and reliable.
Owner:CHONGQING UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products