Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

101results about How to "Suppress dark current" patented technology

High-sensitivity negative capacitance field effect transistor photoelectric detector and preparation method

The invention discloses a high-sensitivity negative capacitance field effect transistor photoelectric detector and a preparation method thereof. The detector is characterized by structurally comprising a substrate, an oxide, a gate electrode, a hafnium oxide-based ferroelectric gate dielectric with a negative capacitance effect, an oxide gate dielectric, a low-dimensional semiconductor channel andmetal source and drain electrodes in sequence from bottom to top. Firstly, a gate electrode layer is prepared on a substrate through ion beam sputtering, a hafnium oxide-based ferroelectric film is grown on the electrode layer by using an atomic layer deposition method, an oxide gate dielectric is deposited after high-temperature rapid annealing, then a transition metal chalcogenide low-dimensional semiconductor is prepared on the structure, and finally metal source and drain electrodes are prepared by using an electron beam etching technology in combination with a stripping process to form the hafnium oxide-based ferroelectric film-based low-dimensional material negative capacitance field effect transistor photoelectric detection device structure. The metal-ferroelectric-oxide-semiconductor photoelectric transistor structure can realize room temperature photoelectric detection with extremely low sub-threshold swing and high performance.
Owner:SHANGHAI INST OF TECHNICAL PHYSICS - CHINESE ACAD OF SCI

Graphene enhancement type InGaAs infrared detector

The invention relates to a graphene enhancement type InGaAs infrared detector. The graphene enhancement type InGaAs infrared detector solves the technical problem that an existing infrared detector is narrow in detection range and high in dark current. According to the graphene enhancement type InGaAs infrared detector, a buffer layer, an InGaAs absorbing layer with wavelength extended and a graphene cover layer which grow sequentially on a substrate form a pin detector structure. The invention discloses a method for growing the mismatch buffer layer on the substrate in a two-step method. An InAlAs ternary system material or InAsP of an InGaAs material which is suitable for metallorganic chemical vapor deposition technology growth and convenient to control and enables forbidden bandwidth to be larger than extended wavelength is adopted and can effectively avoid mismatch dislocation and be suitable for a transparent buffer layer structure with light entering at the back. The method for utilizing graphene to serve as the cover layer of the InGaAs infrared detector to expand the detection range and reduce dark current is provided, detector performance is improved, and the graphene enhancement type InGaAs infrared detector has wide application prospect.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI

Si/TiOx heterojunction-based double-sided crystalline silicon solar cell

The invention provides an Si / TiOx heterojunction-based double-sided crystalline silicon solar cell, which comprises a front electrode, a TiOx layer, a crystalline silicon absorption layer, a p-type crystalline silicon heavily doped layer, a passivation layer and a metal gate electrode, wherein the structure of the Si / TiOx heterojunction-based double-sided crystalline silicon solar cell is the front electrode, the TiOx layer, the crystalline silicon absorption layer, the p-type crystalline silicon heavily doped layer, the passivation layer and the metal gate electrode in sequence from a light facing surface; and an n-type doped TiOx and crystalline silicon are utilized by the light facing surface to form a heterojunction while a traditional crystalline silicon preparation technology based on diffusion is utilized by a back surface. The TiOx can well passivate the surface of a silicon wafer, and the TiOx and silicon form a good heterojunction, so that improvement of the open-circuit voltage and the conversion efficiency of the heterojunction cell is facilitated. Existing crystalline silicon solar cell production equipment can be fully utilized by a traditional crystalline silicon preparation technology of the back surface. The sunlight can be fully utilized by the double-sided structure; the actual generating capacity is increased; and the photovoltaic power generation cost is reduced.
Owner:NANCHANG UNIV

Novel self-filtering narrow spectral response organic light detector

The invention relates to a novel self-filtering narrow spectral response organic light detector. The organic light detector sequentially comprises a substrate, a positive electrode, a P-type layer, anN-type layer and a negative electrode, the P-type layer can be further divided into a single-layer P-type layer structure and a multi-layer P-type layer structure, and in the single-layer P-type layer structure, the band gap of the P-type layer material is wider than that of the N-type layer material; in the multi-layer P-type layer structure, the band gap of at least one P-type layer material inthe P-type layer materials which are not in direct contact with the N-type layer is wider than that of the N-type layer material and / or the P-type layer material which is in direct contact with the N-type layer, and a buffer layer can be added between the positive electrode and the P-type layer and / or between the N-type layer and the negative electrode. According to the invention, a novel devicestructure and a simple preparation method are adopted, and the free selection of a detection spectrum waveband and the free adjustment of the half-peak width of a detection spectrum are achieved without a band-pass optical filter.
Owner:GUANGZHOU GUANGDA INNOVATION TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products