Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

267 results about "Atomic absorption spectroscopy" patented technology

Atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES) is a spectroanalytical procedure for the quantitative determination of chemical elements using the absorption of optical radiation (light) by free atoms in the gaseous state. Atomic absorption spectroscopy is based on absorption of light by free metallic ions.

Method and device for detecting gases by absorption spectroscopy

A method and device for measuring a concentration of a preselected gas in a gas sample are disclosed. The device comprises a Herriott type multipass cell (10) having a center axle (74) and a housing (80A, 80B) surrounding and spaced from the axle to provide a tubular sample cavity (84). The gas sample is pumped through the sample cavity via apertures (154, 156) provided in opposed ends of the axle. A first mirror (44) and a second mirror (46) are supported at opposed ends of the axle. A light source, e.g. a laser or LED, is provided for emitting a light beam into the sample cavity via an entry aperture (30) in the first mirror, the light beam having a wave length at which the preselected gas strongly absorbs. The beam is reflected between the mirrors for a number of times before exiting the cell via an exit aperture (48) in the second mirror and impinging on a detector (52). The device further comprises a reference detector (32) for monitoring the intensity of the unattenuated light beam and a detector for detecting the intensity of light transmitted through the second mirror after a single pass through the cell. The light source is operatively connected to a heat control assembly having a heat sink and the gas sample is passed said heat sink to augment temperature control of the light source.
Owner:ECOTEC INT HLDG LLC

Quartz member for semiconductor manufacturing equipment and method for metal analysis in quartz member

Quartz member such as a quartz tube for semiconductor manufacturing equipment capable of heat treating a substrate to be treated without causing contamination, a manufacturing method of such quartz member, thermal treatment equipment furnished with such quartz member, and an analysis method of metal in quartz member are provided. A quartz specimen is immersed in hydrofluoric acid to expose a layer to be analyzed located at a prescribed depth. On an exposed surface, a decomposition liquid such as hydrofluoric acid or nitric acid is dripped to decompose only an extremely thin layer to be analyzed, followed by recovering of the decomposition liquid. The decomposition liquid is quantitatively analyzed by use of atomic absorption spectroscopy (AAS) or the like to measure an amount of metal contained in the decomposition liquid. From a difference of thicknesses before and after the decomposition and an area of dripped decomposition liquid, a volume of a decomposed layer to be analyzed is obtained. From this and the amount of metal contained in the decomposition liquid, a concentration of metal contained in the layer to be analyzed, in addition a diffusion coefficient of a layer to be analyzed is calculated. With thus obtained diffusion coefficient as an index, quartz material in which metal diffuses with difficulty is sorted out. With thus sorted quartz material, a quartz member used for semiconductor manufacturing equipment such as a quartz tube is manufactured.
Owner:TOKYO ELECTRON LTD

Preparation method of electronic grade high-purity manganese sulfate monohydrate

The invention discloses a method for preparing manganese sulfate monohydrate by taking electrolytic manganese and industrial sulphuric acid as raw material; the method comprises the following steps: (1) the electrolytic manganese is ground and sieved to obtain manganese powder; the manganese powder is added in the industrial sulphuric acid and is heated to 80-90 DEG C and reacts for 4-12h continuously under the stirring condition, so as to obtain manganese sulphate suspension; the heavy metallic salt content in the manganese sulphate suspension is measured by atomic absorption spectroscopy; (2) the pH of the suspension is adjusted to 3-4, barium sulphide is added and filtration is carried out, so as to obtain filtrate 1; (3) lime stone is added in the filtrate 1, after the pH value is adjusted to be 5-6 and is placed still, so as to obtain the filtrate 2; (4) sodium fluoride is added in the filtrate 2 for reacting 20-26 hours and then is filtered, so as to obtain manganese sulphate solution; (5) after the manganese sulphate solution is concentrated and recrystallized, centrifugal separation, washing, drying and crashing are carried out, thereby obtaining the manganese sulfate monohydrate; the method has simple production process, easy operation, no pollution and low equipment requirements.
Owner:GUANGDONG GUANGHUA SCI TECH

Method and device for measuring sulfur content in coal by ultraviolet absorption spectroscopy

The invention discloses a method and a device for measuring sulfur content in coal by ultraviolet absorption spectroscopy. In the measurement method, the decomposition scale and a threshold are determined adaptively by combining empirical mode decomposition with 3sigma criterion, and non-stationary characteristics of differential absorption degree per se can be fully retained, so the spectral interference problem caused by dust, water vapor and background gas in combustion gas is effectively solved; the instantaneous concentration of SO2 is obtained through calculation according to the differential absorption degree after noise reduction and trend term removal, and the total sulfur content accumulated in the coal sample combustion gas is calculated through the gas flow; the sulfur content in the coal can be obtained by dividing the coal sample amount by the total sulfur content separated from the coal sample combustion; and the pretreatment process needed to be performed on the combustion gas by coulometric titration and an infrared absorption method is avoided. The device for measuring the sulfur content in the coal by the ultraviolet absorption spectroscopy comprises a combustion furnace, a measuring chamber, an ultraviolet light source, a spectrometer, an air purifying device, a flow meter, a waste gas treatment device, a computer, and the like.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products