Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

167 results about "Bioactive coating" patented technology

Pure-titanium metal surface micro-arc oxidation treatment electrolyte and antimicrobial bioactive coating preparation method thereof

The invention discloses pure-titanium metal surface micro-arc oxidation treatment electrolyte and an antimicrobial bioactive coating preparation method thereof, belongs to a medical titanium metal surface modification technology, and aims to provide a micro-arc oxidation treatment electrolyte which can remarkably improve pure-titanium metal surface bioactivity and coating bonding strength and a coating preparation method thereof. The electrolyte comprises a compound system including the components of calcium acetate, sodium phosphate and a zinc oxide precursor, wherein the phosphorous ion concentration is 0.5 to 1.0 M, the molar ratio of Ca to P is 0.2 to 1.0, and the designed Zn<2+> concentration accounts for 10 to 20 percent of the total concentration. A biological composite coating is directly generated on the surface of a titanium metal surface in-situ by adopting the electrolyte and a micro-arc oxidation technology. The coating has high bonding strength with a substrate, dense inner layer, coarse and porous outer layer, high bioactivity and high antibacterial property; moreover, the used raw materials are easy to obtain; the process is simple and easy to operate; and the electrolyte has stability, reusability, and low production cost and is suitable for industrial production.
Owner:JIAMUSI UNIVERSITY

Method for preparing similar bone bioactivity coatings medical material by galvano-chemistry method

The invention discloses bone-like bioactive coating medical material which is prepared by adopting an electrochemical method. The invention adopts an electrolytic deposition method and imitates the forming process of a natural bone. Electrolyte solution contains calcium, a phosphorous compound and bone matrix collagen, a medical metal transplant body is taken as a working electrode, platinum is taken as a reference electrode, the electrode reaction causes partial pH value of the electrolyte solution around the medical metal transplant body to ascend, thereby leading collagen to be gelatinized, in cooperation with the deposition of calcium phosphate mineral, the bone-like bioactive coating is formed on the medical metal surface. Through the adoption of the invention method, the bioactive coating acquired on the surface of the metal transplant body is similar to the natural bone in the component and the structure, and has favorable biological activity, thus the disadvantages that the biological activity of the business use hydroxyapatite coating is limited, the required curing time is long, etc. are solved. The preparation process of the invention is simple, highly effective and easy to be industrialized.
Owner:ZHEJIANG UNIV

Process for preparing composite coating of hydroxyapatite and porous titanium dioxide on biomedical titanium metal surface

A process for preparing a composite coating of hydroxyapatite and porous titanium dioxide on the biomedical titanium metal surface belongs to the technical field of metal surface modification. Compared with other technologies of coating titanium surface bioactive coating, the process prepares the a composite coating of hydroxyapatite and porous titanium dioxide on the biomedical titanium matrix surface in situ, thereby the adhesion of titanium matrix substitutes implanted into the body and bone tissues is remarkably improved. The process includes the following steps of, firstly, placing titanium or titanium alloy into a stainless steel groove containing an alkaline electrolyte, using a bipolar impulsing power source, controlling micro-arc oxidation electrical parameters and micro-arc oxidation time, enabling the titanium surface to form a porous titanium dioxide coating by a disruptive discharge of the titanium surface; secondly, putting the coating into a reactor containing liquid through a hydro-thermal method, thereby the hydroxyapatite can grow in situ of the biomedical titanium matrix surface in situ. The process for preparing a composite coating of hydroxyapatite and porous titanium dioxide on the biomedical titanium metal surface is simple in operation, high in controllability and low in manufacturing cost, and can introduce non-toxic substances into the coating.
Owner:HARBIN INST OF TECH

Preparation method of magnesium surface ultrasonic micro-arc oxidation-HF-silane coupling agent multistage compound bioactive coating

The invention provides a preparation method of a magnesium surface ultrasonic micro-arc oxidation-HF-silane coupling agent multistage compound bioactive coating, relates to a method for preparing a pure magnesium bioactive coating composite material, and aims to solve the problems of low bonding strength and poor biocompatibility of a coating and a base in a bioactive coating composite material. The method comprises the following steps: 1, roughly grinding and cleaning a pure magnesium sample; 2, preparing an Na2SiO3 electrolyte A and a KOH electrolyte B, mixing the two electrolytes, and adding KF to obtain a micro-arc oxidation electrolyte; 3, regulating parameters of micro-arc oxidation equipment, and performing micro-arc oxidation on the sample to prepare a coating composite material; and 4, sequentially soaking the rinsed coating composite material in an HF solution and a silane coupling agent, thus completing preparation of the bioactive coating. According to the invention, the bonding strength of the coating and the base in the obtained bioactive coating is high; and meanwhile, magnesium fluoride and magnesium silicate in the oxidation layer ensure favorable biocompatibility.
Owner:JIAMUSI UNIVERSITY

Method for suspending liquid plasma spraying preparation of hydroxyapatite bioactivity coatings

The invention relates to a method for spraying suspending liquid plasma to prepare hydroxyapatite bioactive coating, which comprises following steps: adopting hydroxyapatite suspending liquid as plasma spraying raw materials, adopting a pressure tank or an electronic peristaltic pump as a power transmitting device to transmit the hydroxyapatite suspending liquid, adopting an atomizing nozzle with a small angle to inject the hydroxyapatite suspending liquid into a central region of plasma flame directly and radially or adopting a duct with small diameter to inject the hydroxyapatite suspending liquid into the central region of the plasma flame directly and radially in a linear type jet-flow mode, exchanging heat between the suspending liquid and high temperature plasma flame through transmitting and injecting the suspending liquid, and directly generating the hydroxyapatite bioactive coating on the surface of a biological medical metal base through vaporizing liquid in the suspending liquid, crushing particles, smelting and depositing. The method simplifies a tedious technological link for preparing the spraying raw materials in a method for spraying powder plasma, the spraying raw materials and energy are saved, and the structural homogeneity of the hydroxyapatite bioactive coating which is prepared is good.
Owner:SICHUAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products