Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

146 results about "Biomedical implant" patented technology

Prion-free collagen and collagen-derived products and implants for multiple biomedical applications; methods of making thereof

The use of collagen as a biomedical implant raises safety issues towards viruses and prions. The physicochemical changes and the in vitro and in vivo biocompatibility of collagen treated with heat, and by formic acid (FA), trifluoroacetic acid (TFA), tetrafluoroethanol (TFE) and hexafluoroiso-propanol (HFIP) were investigated. FA and TFA resulted in extensive depurination of nucleic acids while HFIP and TFE did so to a lesser degree. The molecules of FA, and most importantly of TFA, remained within collagen. Although these two acids induced modification in the secondary structure of collagen, resistance to collagenase was not affected and, in vitro, cell growth was not impaired. Severe dehydrothermal treatment, for example 110° C. for 1-3 days under high vacuum, also succeeded in removing completely nucleic acids. Since this treatment also leads to slight cross-linking, it could be advantageously used to eliminate prion and to stabilize gelatin products. Finally, prolonged treatment with TFA provides a transparent collagen, which transparency is further enhanced by adding glycosaminoglycans or proteoglycans, particularly hyaluronic acid. All the above treatments could offer a safe and biocompatible collagen-derived material for diverse biomedical uses, by providing a virus or prion-free product.
Owner:UNIV LAVAL

Three-dimensional bioprinting of biosynthetic cellulose (BC) implants and scaffolds for tissue engineering

A novel BC fermentation technique for controlling 3D shape, thickness and architecture of the entangled cellulose nano-fibril network is presented. The resultant nano-cellulose based structures are useful as biomedical implants and devices, are useful for tissue engineering and regenerative medicine, and for health care products. More particularly, embodiments of the present invention relate to systems and methods for the production and control of 3-D architecture and morphology of nano-cellulose biomaterials produced by bacteria using any biofabrication process, including the novel 3-D Bioprinting processes disclosed. Representative processes according to the invention involve control of the rate of production of biomaterial by bacteria achieved by meticulous control of the addition of fermentation media using a microfluidic system. In exemplary embodiments, the bacteria gradually grew up along the printed alginate structure that had been placed into the culture, incorporating it. After culture, the printed alginate structure was successfully removed revealing porosity where the alginate had been placed. Porosity and interconnectivity of pores in the resultant 3-D architecture can be achieved by porogen introduction using, e.g., ink-jet printer technology.
Owner:VIRGINIA TECH INTPROP INC

Three-dimensional bioprinting of biosynthetic cellulose (BC) implants and scaffolds for tissue engineering

A novel BC fermentation technique for controlling 3D shape, thickness and architecture of the entangled cellulose nano-fibril network is presented. The resultant nano-cellulose based structures are useful as biomedical implants and devices, are useful for tissue engineering and regenerative medicine, and for health care products. More particularly, embodiments of the present invention relate to systems and methods for the production and control of 3-D architecture and morphology of nano-cellulose biomaterials produced by bacteria using any biofabrication process, including the novel 3-D Bioprinting processes disclosed. Representative processes according to the invention involve control of the rate of production of biomaterial by bacteria achieved by meticulous control of the addition of fermentation media using a microfluidic system. In exemplary embodiments, the bacteria gradually grew up along the printed alginate structure that had been placed into the culture, incorporating it. After culture, the printed alginate structure was successfully removed revealing porosity where the alginate had been placed. Porosity and interconnectivity of pores in the resultant 3-D architecture can be achieved by porogen introduction using, e.g., ink-jet printer technology.
Owner:VIRGINIA TECH INTPROP INC

Medical implanted titanium alloy with low elastic modulus and high fatigue strength and preparation method

The invention relates to a medical implanted titanium alloy with low elastic modulus and high fatigue strength and a preparation method. The medical implanted titanium alloy comprises, by weight, 30-33% of Nb, 1-6% of Zr, 2-4% of Mo, 0.20-0.40% of O, and the balance Ti. The preparation method of the medical implanted titanium alloy specifically comprises the steps that smelting is conducted by using a vacuum non-consumable electric-arc furnace to obtain an alloy ingot with uniform ingredients, solution treatment is conducted at 850-950 DEG C after the alloy ingot is subjected to hot forging into bar materials, and water cooling is conducted to the room temperature; then cold rolling deformation processing is conducted, and the deformation quantity is 80-90%; and finally, aging heat treatment is conducted, the heating temperature of the aging heat treatment is 400-500 DEG C, and the heat preservation time is 1-12 h. According to the medical implanted titanium alloy with the low elasticmodulus and the high fatigue strength and the preparation method, after cold rolling and heat treatment, the strength is significantly higher than that of a current most-widely-applied medical implanted titanium alloy Ti-6Al-4V, the fatigue strength is comparable to Ti-6Al-4V, the elastic modulus is only 52% of Ti-6Al-4V, the biocompatibility and the mechanical compatibility are more excellent, and the medical implanted titanium alloy can be applied to preparation of biomedical implants.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products