Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

74 results about "Hepatocellular cancer" patented technology

Immune gene prognosis model for predicting hepatocellular carcinoma tumor immune infiltration and postoperative survival time

ActiveCN112011616APromote the implementation of precision medicineObjective assessment of infiltrationMicrobiological testing/measurementBiostatisticsTNM staging systemMicroarray cgh
The invention relates to an immune gene prognosis model for predicting hepatocellular carcinoma tumor immune infiltration and postoperative survival time, and belongs to the technical field of biological medicines. The model can be used for evaluating the infiltration degree of immune cells in a tumor in clinical practice by detecting the expression levels of 22 specific immune related genes of ahepatocellular carcinoma patient, so that the model can be used for predicting hepatocellular carcinoma tumor immune infiltration in clinical practice and improve the prediction capability of the liver cancer immunotherapy response. The model can be used for judging the postoperative overall survival risk of a patient and guiding the formulation of a postoperative treatment strategy, and the corresponding microarray chip kit can realize the standardization and convenience of detection. Meanwhile, the immune gene prognosis model provided by the invention can increase the prediction accuracy andthe clinical net income of a hepatocellular carcinoma TNM staging system on the total survival time of three years and five years after operation. As a molecular marker for objectively and accuratelyevaluating the tumor immune state and poor prognosis risk of hepatocellular carcinoma, the model can realize accurate implementation of hepatocellular carcinoma immunotherapy and accurate prognosis prediction.
Owner:上海顿慧医疗科技发展有限公司

Diagnostics and methods for treatment of non-alcoholic hepatic steatosis and hepatic steatohepatitis, and prevention of complications thereof

The present invention is directed to a System characterization of NASH that combines Modeling and Biomarkers, enabling pharmaceutical compositions and methods of treatment that relate to the inhibition, resolution and / or prevention of Non Alcoholic Fatty Liver Disease (NAFLD) and Non Alcoholic Steatohepatitis (NASH). Said conditions are Liver related complications among the array of manifestations of metabolic syndromes, including Type 2 diabetes, hyperlipidemia, weight gain, abdominal obesity, insulin resistance, hypertension, atherosclerosis, fatty liver diseases and certain chronic inflammatory states that lead to these manifestations, among others. In additional aspects, the present invention relates to compositions and methods which may be used to treat, inhibit or reduce the likelihood of NASH and NAFLD complications in patients with hepatitis viral infections, including Hepatitis B and Hepatitis C viral infections, as well as the secondary disease states and / or conditions which are often associated with such viral infections, including hepatic steatosis (steatohepatitis), cirrhosis, fatty liver and hepatocellular cancer, metabolic syndrome complications including cardiovascular diseases, neurodegenerative diseases and premature ageing, among other disease states or conditions.
Owner:APHAIA PHARMA AG +1

Automatic liver tumor classification method and device based on multi-stage CT image analysis

According to the liver tumor automatic classification method and device based on multi-stage CT image analysis, full-automatic bile duct cell carcinoma and hepatocellular carcinoma can be recognized,and a high-precision bile duct cell carcinoma and hepatocellular carcinoma recognition model is obtained. The method comprises the following steps: (1) acquiring a contrast-enhanced abdominal CT scanning image, storing the contrast-enhanced abdominal CT scanning image as an arterial phase, a portal vein phase and a delay phase, and carrying out definite diagnosis on liver cancer categories to which all data belong to serve as a model training gold standard; (2) constructing a three-dimensional full convolutional neural network segmentation model, and segmenting the intrinsic characteristics ofthe liver tissue in each stage from the abdominal CT image through model training learning; (3) constructing a three-dimensional convolutional neural network classification model; and inputting the image data obtained by segmentation into a classification model for training, so as to enable the model to perform joint learning and training on the cancer features in multiple periods, thereby predicting the category to which the cancer belongs, comparing the prediction result with a gold standard, and supervising the training process of the model in a loss value feedback mode.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Treatment using oncolytic virus

An oncolytic virus for use in a method of treating or preventing cutaneous squamous cell carcinoma (CSCC), renal cell carcinoma (RCC), non-small cell lung cancer (NSCLC), triple negative breast cancer (TNBC), small cell lung cancer (SCLC), advanced recurrent head and neck cancer, squamous cell carcinoma of the head and neck (SCCHN), nasopharyngeal carcinoma (NPC), hepatocellular carcinoma (HCC), anal cancer, colorectal cancer (CRC), basal cell carcinoma (BCC), Merkel cell carcinoma, appendiceal carcinoma, sarcoma of the skin, recurrent melanoma after surgery, advanced or metastatic urothelialcarcinoma, liver metastases, microsatellite instability high cancer (MSI-H), mixed advanced solid tumors, virally caused cancer, locoregionally advanced cancer, pediatric cancer, cancer in patients with no or minimal pre-existing anti-cancer immunity, cancer as first line therapy, cancer in previously treated patients, cancer in patients who have not received checkpoint blockade therapy, and / or cancer in patients who have received checkpoint blockade therapy, wherein the oncolytic virus: is, or is derived from, a clinical isolate which has been selected by comparing the abilities of a panel of three or more clinical isolates of the same viral species to kill tumor cells of two or more tumor cell lines in vitro and selecting a clinical isolate which is capable of killing cells of two or more tumor cell lines more rapidly and / or at a lower dose in vitro than one or more of the other clinical isolates in the panel; comprises (i) a fusogenic protein-encoding gene; and (ii) an immune stimulatory molecule or an immune stimulatory molecule-encoding gene; comprises (i) a GM-CSF-encoding gene; and (ii) an immune co-stimulatory pathway activating molecule or an immune co-stimulatory pathway activating molecule-encoding gene; and / or comprises a gene encoding a CTLA-4 inhibitor.
Owner:REPLIMUNE

Glutamine metabolism gene tag scoring system for predicting prognosis and treatment resistance of hepatocellular carcinoma

ActiveCN113930506AObjective assessment of overall survivalAids in treatment resistanceMicrobiological testing/measurementProteomicsOncologyChemo therapy
The invention discloses a glutamine metabolism gene tag scoring system for predicting prognosis and treatment resistance of hepatocellular carcinoma, and belongs to the technical field of biological medicine. By detecting the expression level of seven specific glutamine metabolism related genes of a hepatocellular carcinoma patient, a model can be used for judging the total lifetime of the patient, evaluating the treatment resistance of a postoperative transcatheter arterial chemoembolism patient and evaluating the immune cell infiltration degree in a tumor and the immune escape potential of a tumor cell, and the prediction capability on the liver cancer immunotherapy reaction is improved. Meanwhile, the model provided by the invention can improve the prediction accuracy of the three-year total lifetime of hepatocellular carcinoma, and compared with the prediction of the prognosis of the patient directly through the existing next-generation sequencing technology, the number of genes needing to be detected is reduced, the efficiency is improved, and the cost is reduced. As a molecular marker capable of objectively and accurately evaluating hepatocellular carcinoma treatment resistance and tumor immune state, accurate prediction and precise implementation of hepatocellular carcinoma treatment prognosis can be realized.
Owner:AFFILIATED HOSPITAL OF JIANGSU UNIV

Treatment with Anti-alpha2 integrin antibodies

The invention relates to treatment of cancer. More specifically the invention relates to methods of treating cancer selected from the group consisting of squamous cell cancer, lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer, as well as B-cell lymphoma including low grade/follicular non-Hodgkin's lymphoma (NHL); small lymphocytic (SL) NHL; intermediate grade/follicular NHL; intermediate grade diffuse NHL; high grade immunoblastic NHL; high grade lymphoblastic NHL; high grade small non-cleaved cell NHL; bulky disease NHL; mantle cell lymphoma; AIDS-related lymphoma; and Waldenstrom's Macroglobulinemia; chronic lymphocytic leukemia (CLL); acute lymphoblastic leukemia (ALL); Hairy cell leukemia; chronic myeloblastic leukemia; and post-transplant lymphoproliferative disorder (PTLD), as well as abnormal vascular proliferation associated with phakomatoses, edema such as that associated with brain tumors, Meigs' syndrome, melanoma, mesothelioma, multiple myeloma, fibrosarcoma, osteosarcoma and epidermoid carcinoma, by administering antibodies directed to α2β1 integrin.
Owner:ICHNOS SCI SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products