Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

269 results about "Oxy-fuel" patented technology

Oxy-fuel refers to technology that burns pure oxygen with gaseous fuel. As compared to air, which contains 20.95% oxygen, higher temperatures can be reached using pure oxygen. Approximately the same total energy is produced when burning a fuel with oxygen as compared to with air; the difference is the lack of temperature-diluting inert gases. The most common fuel burned in a torch with oxygen is acetylene; even though it presents special handling problems, it has the greatest heat output. The process has also been proposed as a method of capturing carbon dioxide from coal-fired electric power plants because the output flue gases from combustion in oxygen as opposed to air have a higher carbon dioxide content fraction. See Oxy-fuel combustion process.

Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions

A power cogeneration system employing a partially-open gaseous fluid cycle method and apparatus devices for oxy-fuel combustion conversion of a given hydrocarbon composition fuel's heat-value energy into mechanical or electrical power energy, and transferred useful heat energy, with accompanying large reductions of consumed fuel and undesirable exhaust emissions.
Owner:AES DEV CO

Oxidizing oxygen-fuel burner firing for reducing NOx emissions from high temperature furnaces

Burner firing method and device are presented where an oxidizing oxygen-fuel burner is fired at an angle to the reducing air-fuel burner flame to reduce overall NOx emissions from high temperature furnaces. The oxidizing oxy-fuel burner stoichiometric equivalence ratio (oxygen / fuel) is maintained in the range of about 1.5 to about 12.5. The reducing air-fuel burner is fired at an equivalence ratio of 0.6 to 1.00 to reduce the availability of oxygen in the flame and reducing NOx emissions. The oxidizing flame from the oxy-fuel burner is oriented such that the oxidizing flame gas stream intersects the reducing air-fuel flame gas stream at or near the tail section of the air-fuel flame. The inventive methods improve furnace temperature control and thermal efficiency by eliminating some nitrogen and provide an effective burnout of CO and other hydrocarbons using the higher mixing ability of the oxidizing flame combustion products. The simultaneous air-fuel and oxy-fuel burner firing can reduce NOx emissions anywhere from 30% to 70% depending on the air-fuel burner stoichiometric ratio.
Owner:AIR LIQUIDE AMERICA INC +1

Multi-purpose, multi-oxy-fuel, power burner/injector/oxygen lance device

A multi-purpose, multi-oxy-fuel High Temperature Power Burner / Injector / Oxygen Lance, Mechanical System Apparatus Device, for steelmaking from recycled scrap and / or virgin ferrous charge, which can be employed in multi-oxy-fuel (natural gas; pulverized carbonaceous matter; heavy oil), especially by Oxygen Combusted mixture of Natural Gas / Pulverized Carbonaceous Matter in High Temperature Power Burner Mode, for efficient and rapid melting of solid ferrous charge (cold or preheated) in a special steelmaking Metallurgical Furnace or Open Hearth Furnace, Tandem Furnace, BOF, EAF, as its augmenting or only source of thermal energy; more than one Device in Oxygen-Natural Gas / Pulverized Carbonaceous Matter Power Burner Mode, can be employed as the only source of thermal energy in a modified, originally Electric Arc Furnace, as total replacement of Graphite Electrodes and Electric Arc System, the replacement being noticeably more primary energy efficient than the thermal energy provided by Graphite Electrode / Arc System; it also can be employed in an Solid Particles Injector Mode, for injecting of adequately granulated carbonaceous materials or lime into the molten steel for its carburizing or for foamy slag control; further it can be employed in a natural gas shrouded, pulsating oxygen stream, for vertically to the charge oriented soft blow supersonic Oxygen Injection Lance Mode, for decarburization of the molten metal contained in the hearth of the metallurgical furnace and foamy slag control; in one of the embodiments-generally arcuate-pivotally mounted, liquid media cooled composite body, is pivoted into and out of a furnace vessel through a small opening in the shell wall for auto-regulated constant optimal positioning of the Composite Body Tip against solid or molten charge, in each and all multi-purpose modes; furthermore, when inserted into the furnace vessel, the arcuate composite body can be rotated about its longitudinal axis for directing the oxy-fuel high temperature flame towards unmolten charge in the furnace; in an other-generally linear-embodiment, the liquid cooled composite body is attached to the mast type carrier allowing vertical movement of the composite body which enters the furnace vessel through a small opening in the furnace roof; the bimetallic, liquid cooled special tip assembly of both-arcuate and linear embodiments-of the composite body includes easy replaceable, independent, multi-opening nozzles, mounted in a protective, retracted position inside of the liquid cooled special tip assembly.
Owner:EMPCO (CANADA) LTD

Melting of glass

A method of producing flat glass in which foam which appears on the surface of molten glass melted using oxy-fuel burners is dispersed by directing a diffuse, luminescent flame onto the surface of the glass carrying the foam.
Owner:PILKINGTON PLC

Recuperative combustion system

InactiveUS20110041740A1Reducing and eliminating amount of oxygenSolid fuel combustionIndirect carbon-dioxide mitigationOxygenDimethyl ether
The methods and systems described herein relate to a recuperative combustion system that recuperates energy from fuel combustion that would otherwise be lost. The recuperative combustion system minimizes or eliminates the need for an air separator unit through the use of a clean water splitter section, consisting of a thermochemical cycle or high-temperature electrolysis. Water is split into its component hydrogen and oxygen, primarily with process heat from the combustion process. The oxygen produced by the water splitter provides oxygen necessary for oxy-fuel combustion, thereby reducing or eliminating the need for the power intensive air separator unit and / or external oxygen source, significantly increasing the efficiency of the oxy-fuel combustion cycle. Hydrogen produced by the water splitter may be used for a variety of industrial uses, or combined with carbon dioxide (captured from the flue gases produced by said combustion process) to produce methanol. Methanol can further be refined in a methanol to gasoline reactor to produce dimethyl ether, olefins or high grade gasoline. Described herein are methods and systems that 1) increase oxy-fuel combustion efficiency, 2) produce hydrogen for a suite of industrial / energy uses, and 3) capture carbon dioxide and convert it to high value hydrocarbons.
Owner:REILLY TIMOTHY J

Processes for making inorganic fibers

Inorganic fiber production processes and systems are disclosed. One process includes providing a molten inorganic fiberizable material, forming substantially vertical primary fibers from the molten material, and attenuating the primary fibers using an oxy-fuel fiberization burner. Other processes include forming a composition comprising combustion gases, aspirated air and inorganic fibers, and preheating a fuel stream and / or an oxidant stream prior to combustion in a fiberization burner using heat developed during the process. Flame temperature of fiberization burners may be controlled by monitoring various burner parameters.
Owner:JOHNS MANVILLE CORP

Apparatus with mixed fuel separator and method of separating a mixed fuel

In an apparatus comprising a fuel tank, an internal combustion engine, and a separator positioned fluidically between the fuel tank and the internal combustion engine, a method of operating the apparatus is disclosed, wherein the method comprises inputting a mixed fuel containing a hydrocarbon component and an oxygenated component into the separator, separating the fuel in the separator into a hydrocarbon-enriched fuel fraction and an oxygenated fuel component-enriched fuel fraction, and controlling an amount of the hydrocarbon-enriched fuel fraction and an amount of the oxygenated fuel component-enriched fuel fraction provided to the engine based upon an engine operating condition.
Owner:FORD GLOBAL TECH LLC

Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions

A power cogeneration system employing a partially-open gaseous fluid cycle method and apparatus devices for oxy-fuel combustion conversion of a given hydrocarbon composition fuel's heat-value energy into mechanical or electrical power energy, and transferred useful heat energy, with accompanying large reductions of consumed fuel and undesirable exhaust emissions.
Owner:AES DEV CO

Furnace and Process for Controlling the Oxidative State of Molten Materials

A method useful with oxy-fuel combustion and in a furnace which contains molten material, wherein either substoichiometric or superstoichiometric combustion and low velocity injection of fuel and primary and secondary oxidant in an oxy-fuel burner are carried out in an orientation which forms either a reducing or oxidizing atmosphere proximate the molten surface.
Owner:AIR PROD & CHEM INC

Glass melting process and apparatus with reduced emissions and refractory corrosion

A glassmelting apparatus which reduces alkali corrosion comprising: a glassmelting furnace having a plurality of walls, a crown, a charge end, a batch melting area and a fining area; at least two low momentum oxy-fuel burners located in at least one of the walls of the glassmelting furnace, each burner having at least one gas exit port, the lowest point of each gas exit port of each burner having a vertical position that is raised to a height of about 18 inches to about 36 inches above the surface of the glass; each oxy-fuel burner generating a flame along a path directed towards an opposite vertical wall of the glassmelting furnace; and said interior intersection of said walls and said crown of said glassmelting furnace being located at a height of between about 5.5 feet and 9 feet above the glassmelt surface.
Owner:PRAXAIR TECH INC

Processes and systems for making inorganic fibers

Inorganic fiber production processes and systems are disclosed. One process includes providing a molten inorganic fiberizable material, forming substantially vertical primary fibers from the molten material, and attenuating the primary fibers using an oxy-fuel fiberization burner. Other processes include forming a composition comprising combustion gases, aspirated air and inorganic fibers, and preheating a fuel stream and / or an oxidant stream prior to combustion in a fiberization burner using heat developed during the process. Flame temperature of fiberization burners may be controlled by monitoring various burner parameters. This abstract allows a searcher or other reader to quickly ascertain the subject matter of the disclosure. It will not be used to interpret or limit the scope or meaning of the claims.
Owner:JOHNS MANVILLE CORP

Production of activated char using hot gas

InactiveUS20060204430A1Small and simple process equipmentLow costCarbon compoundsAlkali metal halidesActivated carbonPartial oxidation
A gas mixture preheated to high temperatures using an oxy-fuel, an oxygen-enriched air-fuel or an air-fuel burner is used to devolatilize and partially oxidize carbonaceous feedstock, thereby producing an active residual char that can be used in applications utilizing activated carbon. Use of hot gas and ground carbonaceous feedstock allows the equipment to be minimized, thereby allowing the activated carbon to be produced at or near points of use, for example the production of activated char at or near utility boilers for use in the reduction of mercury emissions from flue gas streams.
Owner:PRAXAIR TECH INC

Oxygen production method and plant using chemical looping in a fluidized bed

The invention relates to a method and to a plant for producing high-purity oxygen, said method comprising a chemical loop wherein circulates a fluidized bed material having the capacity to release gaseous oxygen through oxygen partial pressure lowering, at a temperature ranging between 400° C. and 700° C. The oxygen thus produced can be used in applications such as oxycombustion methods, production of syngas under pressure or FCC catalyst regeneration.
Owner:INST FR DU PETROLE

Bi-layer HVOF coating with controlled porosity for use in thermal barrier coatings

A bi-layer bond coating for use on metal alloy components exposed to hostile thermal and chemical environment, such as a gas turbine engine, and the method for applying such coatings. The preferred coatings include a bi-layer bond coat applied to the metal substrate using high velocity oxy-fuel (HVOF) thermal spraying. Bi-layer bond coatings in accordance with the invention consist of a dense first inner layer (such as iron, nickel or cobalt-based alloys) that provides oxidation protection to the metal substrate, and a second outer layer having controlled porosity that tends to promote roughness, mechanical compliance, and promotes adherence of the thermal barrier coating (TBC). Preferably, the outer, less dense layer of the bi-layer bond coat is formed from a mixture of metallic powder and polyester to adjust and control the porosity, but without sacrificing mechanical compliance.
Owner:GENERAL ELECTRIC CO

Bi-layer HVOF coating with controlled porosity for use in thermal barrier coatings

A bi-layer bond coating for use on metal alloy components exposed to hostile thermal and chemical environment, such as a gas turbine engine used to generate electricity and the method for applying such coatings. The preferred coatings include a bi-layer bond coat applied to the metal substrate, with both layers being applied using high velocity oxy-fuel (HVOF) thermal spraying. In one embodiment, bond coatings in accordance with the invention can be used in combination with a thermal barrier coating (“TBC”). However, the invention can also take other forms, such as a stand alone overlay coating. Bi-layer bond coatings in accordance with the invention consist of a dense first inner layer (such as iron, nickel or cobalt-based alloys) that provides oxidation protection to the metal substrate, and a second outer layer having controlled porosity that tends to promote roughness, mechanical compliance, and promotes adherence of the TBC. Preferably, the outer, less dense layer of the bi-layer bond coat is formed from a mixture of metallic powder and polyester to adjust and control the porosity, but without sacrificing mechanical compliance. Together, the layers enhance adherence to the substrate and improve the overall life of the coating system.
Owner:GENERAL ELECTRIC CO

Emulsion atomizer nozzle, and burner, and method for oxy-fuel burner applications

A method for oxy-fuel combustion, the method comprising the steps of: introducing a liquid fuel into an emulsion chamber through a liquid fuel conduit having an effective diameter, the emulsion chamber having a length that is 2 times or less than 2 times of said effective diameter of said liquid fuel conduit; introducing an atomizing gas into the emulsion chamber through at least one atomizing gas conduit; mixing the liquid fuel and the atomizing gas in said emulsion chamber to create an emulsion mixture that has a mean residence time in said emulsion chamber of from 500 to 800 μs, the emulsion mixture having an emulsion mixture velocity less than or equal to 12 m / s; and discharging said emulsion mixture through a generally rectangular-shaped orifice into an oxygen-enriched oxidizer stream. A nozzle and burner for oxy-fuel combustion are also disclosed.
Owner:AIR PROD & CHEM INC

Hybrid oxy-fuel combustion power process

InactiveUS20070199300A1Maximize beneficial attributePotential for emissionEngine fuctionsSteam useWorking fluidHydrocotyle bowlesioides
A closed loop oxy-fuel combustion power generation cycle is disclosed. The closed cycle has a gas generator which combusts oxygen with a hydrocarbon fuel to produce a drive gas mixture of steam and carbon dioxide that drives a turbine directly with the drive gas mixture. The drive gas mixture then enters a condenser where carbon dioxide is removed and water is recirculated to a heat exchanger where heat is transferred from the drive gas mixture to the water, to produce high pressure steam. This high pressure steam acts as a separate drive gas for a steam turbine. This steam is only indirectly heated by the gas generator through the heat exchanger, such that the cycle includes both direct and indirect heating of working fluids. Water / steam downstream from the steam turbine is then routed back to the gas generator or downstream of the gas generator to close the cycle.
Owner:CLEAN ENERGY SYST

Method and device for reducing fuel consumption of diesel engine by catalytic decomposition of oxygen-containing fuel

A method and device for reducing fuel consumption of a diesel engine by catalytic decomposition of oxygen-containing fuel belong to the technical field of diesel engine combustion energy saving and emission reduction. In the present invention, the oxygen-containing fuel is fed into the catalytic reactor installed in the exhaust channel of the diesel engine, and the catalytic reactor is heated by the waste heat of the tail gas discharged from the combustion chamber, so that the oxygen-containing fuel is catalytically decomposed, and the generated hydrogen-rich and carbon monoxide-rich The decomposed gas enters the intake port, mixes with air, and enters the combustion chamber. At the same time, the emulsified oil is sprayed from the nozzle. The atomized emulsified oil evaporates, mixes, ignites and burns in the combustion chamber, and pushes the piston to do work. The system of the present invention makes full use of the waste heat of the exhaust gas of the diesel engine, and can realize the catalytic decomposition of the oxygen-containing fuel without providing energy from the outside. At the same time, combined with the use of emulsified oil, the comprehensive fuel saving rate of the diesel engine can reach 10-15%, and can be greatly improved. Reduce the emission of pollutants such as nitrogen compounds and soot, so as to achieve the purpose of energy saving and emission reduction.
Owner:TSINGHUA UNIV

Processes and systems for making inorganic fibers

Inorganic fiber production processes and systems are disclosed. One process includes providing a molten inorganic fiberizable material, forming substantially vertical primary fibers from the molten material, and attenuating the primary fibers using an oxy-fuel fiberization burner. Other processes include forming a composition comprising combustion gases, aspirated air and inorganic fibers, and preheating a fuel stream and / or an oxidant stream prior to combustion in a fiberization burner using heat developed during the process. Flame temperature of fiberization burners may be controlled by monitoring various burner parameters. This abstract allows a searcher or other reader to quickly ascertain the subject matter of the disclosure. It will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Owner:JOHNS MANVILLE CORP

Applications of oxy-fuel combustion technology into gas turbine combustors and ion transport membrane reactors

Experimental and numerical investigations on an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor are conducted. The combustor is fuelled with CH4CH4 and a mixture of CO2 and O2 as oxidizer. The stability of the oxy-combustion flame is affected when the operating percentage of oxygen in the oxidizer mixture is reduced below 25%. A new 3D reactor design is introduced for the substitution of ITM reactors into a gas turbine combustor. A new oxygen permeation equation model has been developed by fitting the experimental data available in the literature for a LSCF ion transport membrane. The monolith structure design ITM reactor is capable of delivering power ranging from 5 to 8 MWe based on cycle first law efficiency.
Owner:KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Gas injection for glass melting furnace to reduce refractory degradation

A glass melting furnace has a gas inlet positioned proximate to a charging section oxy-fuel combustion region to introduce gas into the region and to at least partially displace gas having a partial pressure of alkali vapor from the region, and optionally a gas outlet is adapted to provide an exit for a volume of furnace atmosphere. A method for reducing alkali vapor corrosion of glass furnace refractory structures includes providing a gas inlet proximate to the oxy-fuel combustion region; introducing a volume of gas from the inlet into the region, displacing a volume of gas having a partial pressure of alkali vapor from the region; and, optionally providing a gas outlet adapted to provide an exit for a volume of furnace atmosphere.
Owner:LINDE LLC

Novel tough particle strengthened iron-based amorphous composite coating

The invention provides a novel tough particle strengthened iron-based amorphous composite coating. The mechanical composite powder of iron-based amorphous alloy powder and tough metal powder is used as a raw material, wherein the iron-based amorphous alloy powder consists of the following elements and unavoidable impurities in percentage by atom: 10.0-17.0% of Cr, 12.0-20.0% of Mo, 4.0-8.0% of B, 10.0-18.0% of C, 0.0-5.0% of Y and the balance of Fe; the tough metal powder can be stainless steel powder, nickel-based metal powder, cobalt-based metal powder, aluminum-based metal powder or copper-based alloy powder; the coating is prepared by the high velocity oxy-fuel technology. The iron-based amorphous composite coating provided by the invention has dense structure, low porosity, relatively high toughness and good bonding strength with the metal substrate. The composite coating has great application prospects in the industrial fields such as waterpower and oil-gas field development facilities, pipeline transportation, ship decks and the like.
Owner:HUAZHONG UNIV OF SCI & TECH

Oxygen-gaseous forehearth burner for air-fuel and oxy-fuel forehearth burner block geometries

An oxy-gaseous fuel burner for a forehearth system having an oxygen conduit, a fuel conduit disposed concentrically within the oxygen conduit and forming an annulus between the fuel conduit and the oxygen conduit, a precombustor conduit disposed at the oxygen outlet end of the oxygen conduit, and a fuel tip disposed at the fuel outlet end of the fuel conduit. The outlet of the fuel tip is disposed at or upstream of the inlet to the precombustor conduit.
Owner:ECLIPSE

Gas injection for glass melting furnace to reduce refractory degradation

A glass melting furnace has a gas inlet positioned proximate to a charging section oxy-fuel combustion region to introduce gas into the region and to at least partially displace gas having a partial pressure of alkali vapor from the region, and optionally a gas outlet is adapted to provide an exit for a volume of furnace atmosphere. A method for reducing alkali vapor corrosion of glass furnace refractory structures includes providing a gas inlet proximate to the oxy-fuel combustion region; introducing a volume of gas from the inlet into the region, displacing a volume of gas having a partial pressure of alkali vapor from the region; and, optionally providing a gas outlet adapted to provide an exit for a volume of furnace atmosphere.
Owner:BOC GRP INC

Integrated polymeric-ceramic membrane based oxy-fuel combustor

Integrated polymeric-ceramic membrane-based oxy-fuel combustor. The combustor includes a polymer membrane structure for receiving air at an input and for delivering oxygen-enriched air at an outlet. An oxygen transport reactor including a ceramic ion transport membrane receives the oxygen-enriched air from the polymer membrane structure to generate oxygen for combustion with a fuel introduced into the oxygen transport reactor.
Owner:KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS +1

Novel enhanced high temperature tapes for high velocity Oxy fuel processes

A finished high velocity oxy fuel (HVOF) tape used with, for example, during known HVOF processing imparts high temperature silicone pressure sensitive adhesives that provide enhanced adhesion strength to provide a firm adhesion to its own backing and unexpectedly leave no residue upon removal from metals. The novel enhanced tapes are made up of coated or uncoated, woven or non-woven glass cloth and ceramic based fabric laminated to at least one side of a metal-foil using a silicone based laminating adhesive, which is then laminated with another layer of a pre-selected combination of the same materials and coated with a high temperature silicone pressure sensitive adhesive and wound to itself to make a self wound tape or covered adhesive assembly with a release liner to make a laminated sheet for die cut samples, among other things. Applications including military and commercial aircraft, automobiles and metal finishing usages leverage of on the unique and inherent benefits of the novel enhanced tapes of the instant teachings.
Owner:SCAPA NORTH AMERICA

Production of activated char using hot gas

InactiveUS7704921B2Small and simple process equipmentLow costCarbon compoundsAlkali metal halidesActivated carbonPartial oxidation
A gas mixture preheated to high temperatures using an oxy-fuel, an oxygen-enriched air-fuel or an air-fuel burner is used to devolatilize and partially oxidize carbonaceous feedstock, thereby producing an active residual char that can be used in applications utilizing activated carbon. Use of hot gas and ground carbonaceous feedstock allows the equipment to be minimized, thereby allowing the activated carbon to be produced at or near points of use, for example the production of activated char at or near utility boilers for use in the reduction of mercury emissions from flue gas streams.
Owner:PRAXAIR TECH INC

Repair of zirconia-based thermal barrier coatings

A method of depositing a zirconia-based ceramic coating (24) using a low velocity oxy-fuel (LVOF) process. Particles of zirconia (14) are mixed with second constituent particles (16) of a material having a melting temperature sufficiently low to be successfully deposited by an LVOF process. The second constituent particles may have a coefficient of thermal expansion within 30% of that of the zirconia particles, and / or they may have a thermal conductivity less than or no more than 20% higher that that of the zirconia particles. The second constituent particles may include calcium titanate, strontium titanate or sodium-zirconium-phosphate-silicate (NZPS). The capability to deposit the zirconia-containing particle mix with an LVOF process facilitates the in-situ repair of a component having a damaged zirconia-based thermal barrier coating.
Owner:SIEMENS POWER GENERATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products