Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

109 results about "Puromycin" patented technology

Puromycin is an antibiotic protein synthesis inhibitor which causes premature chain termination during translation.

Humanized PD-L1 tumor cell line, animal model with same and application of humanized PD-L1 tumor cell line and animal model

The invention provides a humanized PD-L1 tumor cell line MC-38-hPD-L1, a builtanimal tumor model with the same and a method for constructing the humanized PD-L1 tumor cell line. The method particularly includes knocking out animal-origin PD-L1 by the aid of CRISPR-CAS9; carrying out amplification and cultivation to obtain knocked-out cell banks; extracting DNA (deoxyribonucleic acid) and carrying out PCR (polymerase chain reaction) amplification; recycling and cloning amplification products; carrying out over-expression on human-origin PD-L1 in MC-38 cell lines of mPD-L1 KO by the aid of lentivirus systems; packaging lentivirus and screening Puromycin to obtain the humanized MC-38 cell line of PD-L1. The humanized PD-L1 tumor cell line, the animal tumor model and the method have the advantages that as shown by results, high killing efficiency and multiplication capacity are obviously presented by tumor infiltration CD8 T lymphocytes after antibody treatment is carried out, tumor infiltration Treg cells can be obviously inhibited after antibody treatment is carried out, and accordingly the method is proved to be effective and feasible from the aspect of molecular mechanisms.
Owner:SUZHOU INST OF SYST MEDICINE

Method for achieving HMGCR gene knockout based on CRISPR/Cas9 technology

The invention relates to a method for achieving HMGCR gene knockout based on the CRISPR / Cas9 technology. The method is characterized in that two CRISPR / Cas9 target sequence aiming at the HMGCR gene isdesigned, a gRNA single chain is synthesized in vitro, annealing is performed to obtain two gRNA double-chain DNA target insertion fragments, the insertion fragments are inserted into PX459 (pSpCas9(BB)-2A-Puro)V2.0 vectors to obtain the two different-locus plasmids of the target HMGCR gene; the two plasmids are transfected into PK15 cells, puromycin is used to process the cells, the processed cell genome DNA is extracted to perform PCR amplification, the PCR product is denatured, annealing is performed, and then T7E1 is used to perform HMGCR gene knockout identification. The method has the advantages that method can be used for analyzing the expression conditions of sequence and mRNA after the HMGCR gene knockout, whether an off-target phenomenon exists or not can be verified by using amethod combining PCR and T7E1 enzyme treatment, and accordingly the specificity based on target sequence HMGCR-gRNA can be determined; the method is applicable to cell and animal models to achieve fixed-point HMGCR gene knockout, has a reference value to the knockout of other genes, and is good in effect, simple, economical, short in time and the like.
Owner:HUNAN AGRICULTURAL UNIV

Methods for co-encapsulation of combination drugs and co-encapsulated combination drug product

This invention is for an improved process to co-encapsulate hydrophobic drugs and hydrophilic drugs in phospholipid liposomes. Non-toxic supercritical or near-critical fluids with/without polar cosolvents are utilized to solubilize phospholipid materials and hydrophobic drugs, and form uniform liposomes to encapsulate hydrophobic drugs and hydrophilic drugs.
DNA topoisomerase I (Top1) is the target of camptothecin, and novel Top1 inhibitors are in development as anticancer agents. Top1 inhibitors damage DNA by trapping covalent complexes between the Top1 catalytic tyrosine and the 3′-end of the broken DNA. Tyrosyl-DNA phosphodiesterase (Tdp1) can repair Top1-DNA covalent complexes by hydrolyzing the tyrosyl-DNA bond. Inhibiting Tdp1 has the potential to enhance the anticancer activity of Top1 inhibitors and to act as antiproliferative agents. It has been recently reported that neomycin inhibits Tdp1 more effectively than the related aminoglycosides paromomycin and lividomycin A. Inhibition of Tdp1 by neomycin is observed both with single- and double-stranded substrates but is slightly stronger with duplex DNA, which is different from aclarubicin, which only inhibits Tdp1 with the double-stranded substrate. Inhibition by neomycin can be overcome with excess Tdp1 and is greatest at low pH. Aminoglycoside antibiotics and the ribosome inhibitors thiostrepton, clindamycin-2-phosphate, and puromycin are the first reported pharmacological Tdp1 inhibitors. The development of Tdp1 inhibitors as anticancer agents can be envisioned as combinations of Tdp1 and Top1 inhibitors. Moreover, Tdp1 inhibitors might also be effective by themselves as anticancer agents. In addition, Tdp1 inhibitors might be valuable as anti-infectious agents.
This invention can produce a co-encapsulated combination drug product consisting of a topoisomerase 1 inhibitor such as camptothecins including neat camptothecin and its derivatives irinotecan, topotecan and other derivatives, and a tyrosyl-DNA phosphodiesterase (Tdp1) such as aminoglycoside antibiotics including neomycin and tetracycline, and the ribosome inhibitors thiostrepton, clindamycin-2-phosphate, and puromycin.
Owner:APHIOS

Method of inducing differentiation of neural stem cell into dopaminergic neuron by using recombinant slow virus

ActiveCN103865956AMultiple differentiation potentialHigh expressionNervous system cellsFermentationSingle cell suspensionApoptosis
The invention relates to bioengineering technologies, and particularly relates a method of inducing differentiation of neural stem cells into dopaminergic neurons by using recombinant slow virus. The method comprises the following steps: constructing a recombinant slow virus vector; separating, culturing and identifying the neural stem cells; transfecting the recombinant slow virus into NSCs; identifying the NSCs transfected by the recombinant slow virus, wherein the process of transfecting the recombinant slow virus into the NSCs comprises the following steps: digesting NSCs after being subjected to three times of passages to prepare a single-cell suspension, and inoculating into a culture plate; transfecting the TH+Brn4 gene recombinant slow virus; adding the slow virus and ploybrene, uniformly shaking, putting the culture plate into an incubator to culture for 1-2 hours, and replacing fresh differential culture medium; meanwhile, screening by using puromycin to obtain stable transfected cells. The method has the advantages as follows: by constructing the slow virus vectors of target genes TH and Brn4, exogenous genes after transfecting the NSCs can be stably expressed in cells; high proportion of TH positive dopaminergic neuron is generated after differentiation; the Brn4 can promote high expression of neurotrophic factors and has the function of inhibiting apoptosis.
Owner:HELP STEM CELL INNOVATIONS CO LTD

Building and application of chronic virus transformation vector with CMV-CBh double promoters

The invention relates to building and application of a chronic virus transformation vector with CMV-CBh double promoters. The chronic virus vector pLenti-CMV-3FLAG-EGFP-tCBh-mCherry-T2A-Puro is obtained by replacing PGK in the pLenti-CMV-3FLAG-EGFP-tCBh-mCherry-T2A-Puro with tCBh fragments obtained by performing PCR (Polymerase Chain Reaction) amplification. The tCBh promoter is used for driving expression of mCherry gene and Puromycin resistance gene, and cells for stabilizing over-expression of target gene can be screened by using Puromycin; the mCherry gene is beneficial for judging the virus packaging efficiency and the infection efficiency, and is also beneficial for stabilizing the screening of the cells. Transfection fluorescence observation proves that the chronic virus vector expression system with the double promoters is successfully built, and a basic vector is provided for further researching target genes of interest.
Owner:OBIO TECH SHANGHAI CORP LTD

Method for easily screening and obtaining target gene knock-out cell line by using CRISPR/Cas9 technology, and product of method

The invention discloses a method for easily screening and obtaining a target gene knock-out cell line by using a CRISPR / Cas9 technology, and a product of the method. According to the method, small guide ribonucleic acid (sgRNA) of a target exon is designed aiming at an exon of a target gene-Nedd 4 gene, a stable knock-out Nedd 4 gene can be obtained by using the CRISPR / Cas9 technology, puromycin or blasticidin screening and Western blot identification, and the cell line which can be screened by using puromycin or blasticidin is obtained. The method combines a PX330 carrier (a CRISPR / Cas9 carrier) and a Tiall carrier for use so as to obtain the target gene knock-out cell line; therefore, an effective tool is provided for researching the functions and action mechanisms of genes.
Owner:FIELD OPERATION BLOOD TRANSFUSION INST OF PLA SCI ACAD OF MILITARY

Detection of protein expression in vivo using fluorescent puromycin conjugates

Disclosed is a class of reagents for examining protein expression in vivo that does not require transfection, radiolabeling, or the prior choice of a candidate gene. Further, a series of puromycin conjugates was constructed bearing various labeling moieties. These conjugates were readily incorporated into expressed protein products in cell lysates in vitro and efficiently cross cell membranes to function in protein synthesis in vivo as indicated by flow cytometry, selective enrichment studies, and western analysis. The present invention demonstrates that labeled-puromycin conjugates offer a general means to examine protein expression in vivo.
Owner:CALIFORNIA INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products