Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

50results about How to "Sufficient rate" patented technology

Desalination system

ActiveUS20080173590A1High degree of mixingHigh degree of turbulenceGeneral water supply conservationSeawater treatmentHigh rateSeawater
A desalination system in the form of a submerged gas evaporator that includes a vessel, a gas delivery tube partially disposed within the vessel to deliver a gas into the vessel and a fluid inlet that provides a fluid to the vessel at a rate sufficient to maintain a controlled constant level of fluid within the vessel. A weir is disposed within the vessel adjacent the gas delivery tube to form a first fluid circulation path between a first weir end and a wall of the vessel and a second fluid circulation path between a second weir end and an upper end of the vessel. During operation, gas introduced through the tube mixes with the fluid and the combined gas and fluid flow at a high rate with a high degree of turbulence along the first and second circulation paths defined around the weir, thereby promoting vigorous mixing and intimate contact between the gas and the fluid. This turbulent flow develops a significant amount of inter facial surface area between the gas and the fluid resulting in a reduction of the required residence time of the gas within the fluid to achieve thermal equilibrium which leads to a more efficient and complete evaporation. Additionally, vapor exiting the submerged gas evaporator is condensed in a condensing unit thus precipitating vapor into a liquid for removal.
Owner:HEARTLAND WATER TECH INC

Mesh Pouches for Implantable Medical Devices

ActiveUS20150086604A1Reduces and prevents implantReduces and prevents and surgery-related complicationBiocideElectrotherapyFiberSide effect
Biodegradable polymer-coated surgical meshes formed into pouches are described for use with cardiac rhythm management devices (CRMs) and other implantable medical devices. Such meshes are formed into a receptacle, e.g., a pouch or other covering, capable of encasing, surrounding and/or holding the cardiac rhythm management device or other implantable medical device for the purpose of securing it in position, inhibiting or reducing bacterial growth, providing pain relief and/or inhibiting scarring or fibrosis on or around the CRM or other implantable medical device. Preferred embodiments include surgical mesh pouches coated with one or more biodegradable polymers that can act as a stiffening agent by coating the filaments or fibers of the mesh to temporarily immobilize the contact points of those filaments or fibers and/or by increasing the stiffness of the mesh by at least 1.1 times its original stiffness. The pouches of the invention can also provide relief from various post-operative complications associated with their implantation, insertion or surgical use, and, optionally, include one or more drugs in the polymer matrix of the coating to provide prophylactic effects and/or alleviate side effects or complications associated with the surgery or implantation of the CRM or other implantable medical device.
Owner:TYRX

Multi-grounded neutral electrical isolation between utility secondary low-voltage power service and high-voltage transmission structures

A multi-grounded neutral electrical isolation system for a personal-communication-system cell site consists of two standard distribution transformers separated by a distance greater than the zone of influence corresponding to the maximum expected ground potential rise at the PCS cell site. The primary winding of the first transformer is connected to the utility's low-voltage distribution system and is grounded through the network's ground. The secondary winding is connected to the primary winding of the second transformer through a high-voltage non-shielded insulated conductor and the frames of the two transformers are kept electrically isolated. The secondary winding of the second transformer energizes the PCS cell site and shares its ground connection, which is also common to the adjacent high-voltage transmission tower. All neutrals are grounded through their respective grounding systems. The second transformer is selected with a basic-insulation-level rating sufficient to withstand the maximum ground potential rise expected to occur at the cell site as a result of a fault or a lightening discharge at the high-voltage transmission tower. By separating the two transformers by a distance at least equal to the zone of influence corresponding to such a GPR, the isolation of the distribution grid from the cell site is ensured. Moreover, the BIL rating of the transformers protects the transmission grid from a sudden potential rise due to a fault in the transformer's insulation.
Owner:WILSON HAMILTON & SEVERINO ENGINEERS LLC AN ARIZONA LLC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products