Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

753 results about "Metal binding" patented technology

Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording

A photosensitive composition and A photosensitive medium for volume hologram recording comprises a photopolymerization reactive compound (a monomer) and any one of the following binder: (a) an organic-inorganic hybrid polymer obtainable by copolymerizing an organometallic compound of the formula 1 “R1m M1 (OR2)” and an ethylenic monomer and / or its hydrolyzed polycondensate; (b) an organic-inorganic hybrid polymer obtainable by copolymerizing an organometallic compound of the formula 3 “R4m Si (OR5)n” and an ethylenic monomer and / or its hydrolyzed polycondensate; and (c) a binder resin bonded to a metal or a combination use of a binder resin containing a hydroxyl group and / or carboxyl group and a metal chelate compound.
Owner:DAI NIPPON PRINTING CO LTD

Composition for long-acting peptide analogs

The invention describes compositions of peptide analogs that are active in blood or cleavable in blood to release an active peptide. The peptide analogs have a general formula: A-(Cm)x-Peptide, wherein A is hydrophobic moiety or a metal binding moiety, e.g., a chemical group or moiety containing 1) an alkyl group having 6 to 36 carbon units, 2) a nitrilotriacetic acid group, 3) an imidodiacetic acid group, or 4) a moiety of formula (ZyHisw)p, wherein Z is any amino acid residue other than histidine, His is histidine, y is an integer from 0-6; w is an integer from 1-6; and p is an integer from 1-6; wherein if A has alkyl group with 6 to 36 carbon units x is greater than 0; and Cm is a cleavable moiety consisting of glycine or alanine or lysine or arginine or N-Arginine or N-lysine, wherein x is an integer between 0-6 and N may be any amino acid or none. The peptide analogs are complexed with polymeric carrier to provide enhanced half-life.
Owner:PHARMAIN CORP

OLEDs having n-type doping

The present invention provides an organic light emitting device comprising an anode, a cathode, and an organic layer disposed between the anode and the cathode, wherein the organic layer comprises a host material, an alkali metal or an alkaline earth metal, and a metal binding agent. In a preferred embodiment, the organic layer is an electron transport layer in which the metal binding agent may confine the alkali metal or the alkaline earth metal.
Owner:SOUTHERN CALIFORNIA THE UNIV OF

Metal ceramic combination binding agent and combination binding agent diamond wheel

The invention belongs to the field of diamond wheels and particularly relates to a metal ceramic combination binding agent and a combination binding agent diamond wheel. The metal ceramic combination binding agent is composed of, by weight, 60%-80% of 663 bronze powder and 20%-40% of ceramic powder. The ceramic powder is homemade and composed of, by weight, 45%-60% of silicon dioxide, 20%-30% of boric oxide, 10%-15% of potassium oxide, 5%-10% of magnesium oxide and 2%-5% of calcium oxide. The combination binding agent diamond wheel is composed of, by volume, 25%-40%of diamond abrasive, 55%-75% of combination binding agent and 2%-3% of pore forming agent. When the diamond wheel made of the metal ceramic combination binding agent is applied to a five-axis cnc machine tool, the good sharpness and the good self-sharpening performance of a ceramic binding agent are kept and the advantages of high rigidity and the good shape-maintaining performance of a metal binding agene are obtained. The comprehensive processing efficiency is improved by 100% to 150%.
Owner:江苏赛扬精工科技有限责任公司

OLEDs having n-type doping

The present invention provides an organic light emitting device comprising an anode, a cathode, and an organic layer disposed between the anode and the cathode, wherein the organic layer comprises a host material, an alkali metal or an alkaline earth metal, and a metal binding agent. In a preferred embodiment, the organic layer is an electron transport layer in which the metal binding agent may confine the alkali metal or the alkaline earth metal.
Owner:SOUTHERN CALIFORNIA THE UNIV OF

Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording

A photosensitive composition and A photosensitive medium for volume hologram recording comprises a photopolymerization reactive compound (a monomer) and any one of the following binder: (a) an organic-inorganic hybrid polymer obtainable by copolymerizing an organometallic compound of the formula 1 "R1m M1 (OR2)" and an ethylenic monomer and / or its hydrolyzed polycondensate; (b) an organic-inorganic hybrid polymer obtainable by copolymerizing an organometallic compound of the formula 3 "R4m Si (OR5)n" and an ethylenic monomer and / or its hydrolyzed polycondensate; and (c) a binder resin bonded to a metal or a combination use of a binder resin containing a hydroxyl group and / or carboxyl group and a metal chelate compound.
Owner:DAI NIPPON PRINTING CO LTD

Weldable ultrahard materials and associated methods of manufacture

A weldable ultrahard insert can include an ultrahard working layer and a weldable metal layer metallically bonded with the working layer. The ultrahard working layer can be any ultrahard material such as PCD, PCBN, metal carbide, ceramic, diamond, or the like. The weldable ultrahard inserts can be formed by charging a reaction vessel with ultrahard materials, including precursors thereof, and placing a weldable metal layer in the reaction vessel with an optional intermediate layer. The assembly can be subjected to a pressure and a temperature sufficient to metallically bond the weldable metal layer to the ultrahard material. The weldable layer is formed as part of the insert in situ which facilitates subsequent welding of the insert to a tool substrate without risking damage to the ultrahard material.
Owner:ADICO ASIA POLYDIAMOND

Glass and use of a glass for glass-metal bonds

The glass of the glass-metal bond contains the following ingredients in the following amounts: SiO2, 72-80 wt %; B2O3, 4-<6 wt %; Al2O3, 2-5 wt %; Na2O, 4-7 wt %; K2O, 0-3 wt %; CaO, 2.5-8 wt %; MgO, 0-2 wt %; BaO, 0-4 wt %; TiO2, 0-5 wt %; CeO2, 0-2 wt %; Fe2O3, 0-0.1 wt %; F, 0-2 wt %; and the ratio of the sum total amount of Al2O3 and B2O3 (in mol %) to the sum total amount of MgO, CaO and BaO (in mol %) in the glass is less than 5. The glass-metal bond advantageously includes a KOVAR® alloy and the glass of the aforesaid composition and connects the glass envelope tube with an inner metal absorber tube in a tube collector.
Owner:SCHOTT AG

Recombinant streptavidin-metallothionein chimeric protein having biological recognition specificity

Streptavidin-metallothionein chimeric proteins with biological recognition specificity in which the streptavidin moiety provides high affinity biotin binding and the metallothionein moiety provides a high affinity metal binding. The binding affinity of the streptavidin-metallothionein chimeric protein both for biotin and heavy metal ions allows specific incorporation into, conjugation with, or labelling of any biological material containing biotin with various heavy metal ions.
Owner:RGT UNIV OF CALIFORNIA

Removing metals from solution using metal binding compounds and sorbents therefor

Removing metals from metal containing acidic solutions, such as contaminated waters and industrial wastewaters, is described. An amphipathic, heterocyclic, metal-coordinating compound (an extraordinaiy ligand) and a sorbent are added to a solution, such that the addition, at a specific acidic pH of the solution, causes at least some of the metal-coordinating compound to bind with some of the metal cations and at least some of the metal-coordinating compound sorbs to the sorbent, along with any metal cations bound therewith. The compound and the sorbent may be added to the solution, either together or independently, so that the compound may bind the metal. The metal binding compound may be a benzotriazole, a benzothiazole, or another compound to bind a metal. The sorbent is selected to interact with the metal-coordinating compound in sequestering the metal from solution as part of a complexation. Thereafter, the ligand-metal complex may be removed from the solution.
Owner:UNIV OF COLORADO THE REGENTS OF

Transparent conductive film, information input device, and electronic device

ActiveUS20130258568A1Prevent diffused reflection of lightSuppressing cost increaseConductive layers on insulating-supportsSolid-state devicesMetal nanowiresTransparent conducting film
A transparent conductive film including metal nanowires and a colored compound adsorbed by the metal nanowires is provided. The metal nanowires are a material which absorbs light in the visible light region, and also each has a functional group which is bound to a metal constituting the metal nanowire.
Owner:DEXERIALS CORP

Metal-binding compounds and uses therefor

The invention provides a method of reducing the damage done by reactive oxygen species (ROS) in an animal. The invention also provides a method of reducing the concentration of a metal in an animal. These methods comprise administering to the animal an effective amount of a metal-binding compound as further described in the application. The invention further provides a method of reducing the damage done by ROS to a cell, a tissue or an organ that has been removed from an animal. This method comprising contacting the cell, tissue or organ with a solution or medium containing an effective amount of a metal-binding compound of the invention. The invention further provides novel metal-binding compounds, pharmaceutical compositions comprising the metal-binding compounds, and kits comprising a container holding a metal-binding compound of the invention.
Owner:AMPIO PHARMA

Method for preparing metal binding agent diamond scroll saw

The invention provides a preparation method and the product of a metal binder diamond wire saw, comprising the preparation steps of (1) steel wire surface, (2) plating auxiliary disposal of the steel wire, (3) burdening, (4) plating of steel wire and (5) post-processing. The thickness of the binder coating ranges from 1 / 2 to 2 / 3 of the grain diameter of the diamond. By a series of chemical and diffusion reaction, the surface of the steel wire is covered by a layer of uniform and firm coating 3; a diamond mill grain 2 is also uniformly held in a metal binding layer 1, thus achieving the cutting object.
Owner:ZHEJIANG UNIV OF TECH

AlCrSiN-based multilayer nanometer composite cutter coating layer and preparation method thereof

The invention relates to an AlCrSiN-based multilayer nanometer composite cutter coating layer and a preparation method thereof, and belongs to the technical field of preparation of cutter coating layers. A cutter basal body of the AlCrSiN-based multilayer nanometer composite cutter coating layer adopts a WC-Co hard allot or high-speed steel; the coating layer structure comprises a Ti metal bonding layer, an AlTiN transition layer and an AlCrSiN main wear resistant layer, wherein the AlTiN transition layer consists of 29-35 at.% of aluminum, 15-20 at.% of titanium, and 47-51 at.% of nitrogen; and the AlCrSiN main wear resistant layer consists of 25-30 at.% of aluminum, 20-25 at.% of chromium, 1-10 at.% of silicon, and 45-50 at.% of nitrogen. The transition layer AlTiN coating layer is prepared by a high-power pulse magnetron sputtering technology; and the AlCrSiN coating layer is prepared by an arc ion plating technology. The AlCrSiN-based multilayer nanometer composite cutter coating layer has the advantages of high hardness, low friction coefficient, low internal stress, high bonding strength and good high-temperature stability; a deposition coating cutter is suitable for cutting a high-hardness steel material under the condition of high speed; and the service life of the cutter can be largely prolonged.
Owner:GUANGDONG UNIV OF TECH

In-gas discharge dressing and truing method for large-particle diamond grinding wheel

The invention discloses an in-gas discharge dressing and truing method for a large-particle diamond grinding wheel. The method includes: fixing the diamond grinding wheel on a grinding wheel shaft, and fixing a conducting electrode on the horizontal plane; connecting the diamond grinding wheel, the electrode, a graphite brush, a power source and a wire to form a discharge circuit; connecting a positive pole of the power source to the grinding wheel, and connecting a negative pole of the power source to the electrode. When rotating, the diamond grinding wheel linearly reciprocates on the surface of the electrode; metal bond is removed by pulse sparks generated between the electrode and the metal bond of the grinding wheel, so that diamond abrasive particles are edged from the surface of the grinding wheel; spark discharge occurs between the metal bond and whirling conducting chips generated when the edged diamond abrasive particles cut the copper electrode, generated instant high temperature is transmitted to cutting edges of the diamond abrasive particles in contact cutting through the chips, the tips of the cutting edges are pneumatically dressed, and accordingly micro edging, dressing and truing of the grinding wheel are achieved, more effective abrasive particles are generated and efficient grinding of smooth mirrors is achieved.
Owner:SOUTH CHINA UNIV OF TECH

Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus

A member 10 for a semiconductor manufacturing apparatus includes an alumina electrostatic chuck 20, a cooling plate 30, and a cooling plate-chuck bonding layer 40. The cooling plate 30 includes first to third substrates 31 to 33, a first metal bonding layer 34 between the first and second substrates 31 and 32, a second metal bonding layer 35 between the second and third substrates 32 and 33, and a refrigerant path 36. The first to third substrates 31 to 33 are formed of a dense composite material containing Si, SiC, and Ti. The metal bonding layers 34 and 35 are formed by thermal compression bonding of the substrates 31 to 33 with an Al—Si—Mg or Al—Mg metal bonding material interposed between the first and second substrates 31 and 32 and between the second and third substrates 32 and 33.
Owner:NGK INSULATORS LTD

Edging wheel and method for making it

The invention discloses a grinding wheel on the assembling base, which contains two layers or more grinding wheel with inner-layer grinding wheel and outer-layer grinding wheel distributed concentrically, wherein the inner-layer grinding wheel displays ring-shaped continuous layout and outer-layer grinding wheel displays ring-shaped continuous or even-interrupted layout, the assembling base lies in the ring-shaped assembling flute of inner layer grinding wheel, the assembling flute is set continually or intervally, whose cross surface displays dovetail or inversed-T shaped structure. the invention punches one coil of resin adhesive diamond working layer on the inner layer of diamond grinding wheel, which repairs and grinds edge on the assembling base.
Owner:广东奔朗新材料股份有限公司

Polymeric carrier compositions for delivery of active agents, methods of making and using the same

In part, the present invention is directed to compositions and methods of making compositions comprising a polymeric backbone, a chelating group, a metal ion, and an active agent with a metal binding domain. The compositions can optionally further comprise protective groups. In part, the present invention is directed to prolonging the blood circulation time of an active agent containing a metal binding domain by using a composition comprising a polymeric backbone with a protective group, a chelator, and a metal ion.
Owner:PHARMAIN CORP

Outer blade cutting wheel and making method

In an outer blade cutting wheel comprising an annular thin disc base of cemented carbide having an outer diameter of 80-200 mm, an inner diameter of 30-80 mm, and a thickness of 0.1-1.0 mm, and a blade section disposed on an outer periphery of the base, the blade section comprises diamond grains and / or CBN grains bound with a metal bond having a Young's modulus of 0.7-4.0×1011 Pa and has a thickness which is greater than the thickness of the base by at least 0.01 mm. The outer blade cutting wheel is capable of cutting a workpiece at a high accuracy and a reduced allowance, improves machining yields, and reduces machining costs.
Owner:SHIN ETSU CHEM IND CO LTD

Superhard abrasive grinding wheel of metal binding agent eletrolyzable online, and preparation method

An ultrahard abrasive disk able to be in-line electrolyzed for truing it is prepared from diamond, cubic boron nitride (CBN) and the binder prepared from Fe powder, Cu powder, metal additive and non-metal additive through proportionally mixing diamond, VBN and Fe powder, stirring, adding alcohol, mixing, adding others, stirring, cold die pressing, and sintering in reductive atmosphere.
Owner:BEIJING UNIV OF TECH

Method for preparing quantum dot using metal binding protein and recombinant microorganisms therefor

The present invention relates to a method of preparing heavy metal nanoparticles using a heavy metal-binding protein. More specifically, relates to a method for preparing heavy metal structures, comprising the steps of: culturing a microorganism transformed with a gene encoding a heavy metal-binding protein, in a heavy metal ion-containing medium, to produce heavy metal structures in the microorganism; and collecting the produced heavy metal structures, as well as nanoparticles of heavy metal structures prepared according to said method. Unlike prior methods of preparing quantum dots by physically binding metal materials, the quantum dots disclosed herein can be efficiently produced by expressing the heavy metal-binding protein in cells. In addition, the quantum dots are useful because they can solve an optical stability problem that is the shortcoming of organic fluorophores.
Owner:KOREA ADVANCED INST OF SCI & TECH

Metal-ceramic bond diamond grinding wheel and production method thereof

The invention discloses a novel metal-ceramic bond diamond grinding wheel having the high strength and form-holding property in metal bond grinding wheels and the high self-sharpening property in ceramic bond grinding wheels, and a production method thereof. The metal-ceramic bond diamond grinding wheel is produced by: 1, preparing powder mixture out of 60-70% of copper-plated diamond powder, 15-20% of (W, Ti)C powder, 5-10% of tin powder, and 5-15% of iron group powders; mixing according to the above components and ratio to obtain the powder mixture; 2, forming, namely pressing the powder mixture into blanks by pressure forming; 3, sintering, namely subjecting the blanks to inert atmosphere low-pressure sintering, heating the blanks to 850-1050DEG C during sintering, and holding the temperature for 10-30 minutes. The copper-plated diamond powder is composed of particles with average particle size of 5-80 micrometers, and the particles are composed of diamond cores and copper coatings covering the diamond cores. Inert atmosphere during sintering is 5-10Mpa.
Owner:长沙市萨普新材料有限公司

Metallization process and product produced thereby

A layered structure produced by metallizing a substrate including: (a) providing a transfer film including film layer and metal layer bonded together by a cured breakaway layer; (b) providing a substrate; (c) applying electron beam curable transfer adhesive to a portion of the substrate; (d) securing the transfer film to the substrate, where the transfer adhesive is between the metal layer and substrate, forming an intermediate product; (e) passing the intermediate product through an electron beam curing apparatus to cure the transfer adhesive; and (f) removing the transfer film. In the metallized product, the cured breakaway coating is bonded only to the metal. The cured breakaway layer preferably has a cured elongation at break, in tension, of less than about 20%. Precise metallized edges are produced, e.g., edge variation of about ±0.010 in., or better. The process can be utilized with total or selective metal transfer.
Owner:UNIFOIL CORP

Diamond saw blade and manufacturing method thereof

InactiveCN102049814ANo problems such as precipitation and discolorationVersatileLayered productsMetal sawing tool makingWear resistanceMetal
The invention relates to a diamond saw blade and a manufacturing method thereof, in particular to the diamond saw blade with combined cutting and accurate grinding functions. A tool bit of the saw blade forms a sharp corner, and consists of two performance layers which are a cutting layer and an accurate grinding layer respectively, wherein the cutting layer comprises components such as coarse diamonds and a wearable metallic bond, and has the characteristics of quick cutting and wear resistance; and the accurate grinding layer comprises the components such as fine diamonds and a synchronously wearable metal bond. When the diamond saw blade provided by the invention cuts ceramic veneers and floor tiles, the cutting layer finishes cutting operations and the accurate grinding layer performs grinding to remove rough cut surfaces and edge cracks so as to form even undamaged sections.
Owner:CHANGZHOU HUAZHONG GROUP

Catalysts for oxygen reduction and evolution in metal-air electrochemical cells

Methods and devices for catalyzing reactions, e.g., in a metal-air electrochemical cell, are disclosed. In some instances, a porous positive electrode of the metal-air electrochemical cell includes a metal to catalyze a reaction at the electrode (e.g., oxidation of one or more metal-oxide species). The metal can be disposed as nanoparticles, and / or be combined with a second metal. Other aspects are directed to devices and methods that can generally promote a chemical reaction (e.g., an oxidation / reduction reaction) such as the formation of platinum containing nanoparticles that can be used to catalyze electrochemical reactions.
Owner:MASSACHUSETTS INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products