Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

245 results about "Imidodiacetic acid" patented technology

Iminodiacetic acid, HN(CH2CO2H)2, often abbreviated to IDA, is a dicarboxylic acid amine (the nitrogen atom forms a secondary amino group, not an imino group as the name suggests). The iminodiacetate anion can act as a tridentate ligand to form a metal complex with two, fused, five membered chelate rings.

Metal utilization in supported, metal-containing catalysts

Generally, the present invention relates to improvements in metal utilization in supported, metal-containing catalysts. For example, the present invention relates to methods for directing and/or controlling metal deposition onto surfaces of porous substrates. The present invention also relates to methods for preparing catalysts in which a first metal is deposited onto a support (e.g., a porous carbon support) to provide one or more regions of a first metal at the surface of the support, and a second metal is deposited at the surface of the one or more regions of the first metal. Generally, the electropositivity of the first metal (e.g., copper or iron) is greater than the electropositivity of the second metal (e.g., a noble metal such as platinum) and the second metal is deposited at the surface of the one or more regions of the first metal by displacement of the first metal. The present invention further relates to treated substrates, catalyst precursor structures and catalysts prepared by these methods. The invention further relates to use of catalysts prepared as detailed herein in catalytic oxidation reactions, such as oxidation of a substrate selected from the group consisting of N-(phosphonomethyl)iminodiacetic acid or a salt thereof, formaldehyde, and/or formic acid.
Owner:MONSANTO TECH LLC

Treatment process for wastewater from N-(Phosphonomethyl)iminodiacetic acid production

The invention discloses a method for treating PMIDA (N-(phosphonomethyl)iminodiacetic acid) production wastewater, which comprises the following steps: 1) the PMIDA production wastewater is sent into equipment with a compound evaporator and a vacuum system, and is separated into a saturated concentrated solution containing sodium chloride and evaporable water at a steam pressure of between 0.1 and 0.4MPa and a vacuum degree of between 0.05 and 0.08MPa; the concentrated solution containing the sodium chloride is cooled to crystallize the sodium chloride; and the solid-liquid separation is performed; 2) separating medium is sent into a curing container, a curing agent is added, and innoxious solid mud and a filtrate are obtained after the washing and filtration; 3) after the evaporable water and the filtrate are mixed, a neutralizing agent is used to adjust the pH value to between 6 and 8; 4) an oxidant is added in neutralized wastewater for oxidation; and 5) a treated oxidized liquid is aerated and then enters the prior biochemical system to obtain treated water. The method can greatly reduce the treatment cost for the PMIDA production wastewater, can also extract partial useful constituents in the PMIDA production wastewater, can be recycled, and is favorable for the environmental protection.
Owner:SICHUAN BEIER CHEM GROUP

Environmental-friendly new method for preparing N-phosphonomethyl iminodiacetic acid by utilizing acrylonitrile byproduct hydrocyanic acid

The invention relates to an environmental-friendly new method for preparing N-phosphonomethyl iminodiacetic acid by utilizing acrylonitrile byproduct hydrocyanic acid, belonging to the comprehensive utilization of acrylonitrile device byproduct hydrocyanic acid in industrial scale. The method includes that: step first, acrylonitrile byproduct hydrocyanic acid is used for preparing hydroxyl acetonitrile, and then iminodiacetonitrile is prepared; step two, the obtained iminodiacetonitrile is used for preparing iminodiacetic acid by acid hydrolysis method; and step three, the obtained iminodiacetic acid is used for preparing N-phosphonomethyl iminodiacetic acid. No report of preparing PMIDA by utilizing acrylonitrile byproduct hydrocyanic acid in industrial scale is seen, and the inventor uses local materials, utilizes the advantages of being adjacent to Qilu petrochemical and having resource of hydrocyanic acid (4000 ton/year) transmitted by pipeline and initially provides the method for preparing PMIDA by utilizing acrylonitrile byproduct hydrocyanic acid in industrial scale. The invention solves the problem of region restriction of product production caused by inconvenient transportation of hydrocyanic acid. A gas and liquor mixer is applied to iminodiacetonitrile reaction, and by virtue of DCS control system, quality and yield of iminodiacetonitrile are improved.
Owner:YINGKOU YINGXIN CHEM TECH CO LTD

Preparation method of modified activated carbon used for heavy metal wastewater treatment

The invention discloses a preparation method of modified activated carbon used for heavy metal wastewater treatment. The preparation method comprises the steps that firstly, activated carbon is washed, dried, ground, sieved and soaked, so that pores of the activated carbon are filled with water; secondly, clean air is blown so that the activated carbon can be in a boiling state, and an oxidizing agent is sprayed for controllable oxidation; thirdly, N-(2,3-glycidyl) iminodiacetic acid disodium allows iminodiacetic acid disodium to be connected to the surface of the activated carbon through epoxy group ring opening. According to the prepared modified activated carbon, hydroxyls, carboxyls and iminodiacetic acid groups having a strong effect on heavy metal ions are introduced only on the surface, the original hole channel structure feature of the activated carbon is maintained, the capacities of strong heavy metal adsorption and organic pollutant removal are both achieved, and the dual purposes of removing heavy metal and organic pollution can be achieved by one step through adsorption via activated carbon. Meanwhile, the adsorbed heavy metal is easy to recycle, the activated carbon is easy to regenerate, the cycle service life of the activated carbon is long, no secondary pollution will occur, and therefore the preparation method has good application and popularization prospects.
Owner:HUNAN UNIV OF SCI & TECH

Environmentally-friendly clean production method of iminodiacetic acid

The invention discloses an environmentally-friendly clean production method of iminodiacetic acid. According to the method, the iminodiacetic acid product is prepared from iminodiacetonitrile serving as the starting raw material through the steps of performing sulfuric acid hydrolysis, performing ammonia or ammonia water neutralization, decoloring, recrystallizing and the like; ammonium sulfate is separated out by decoloring, concentrating and crystallizing mother liquid; and condensate water and the mother liquid are recycled and applied to the next time of sulfuric acid dilution. By adopting the method, a large amount of sodium sulfate generated by alkaline hydrolysis is avoided, and corrosion to equipment and pollution to operation environment caused by hydrochloric acid hydrolysis are avoided; the reaction mother liquid can be completely reused and the iminodiacetic acid which the mother liquid contains can be completely recycled, so the yield is increased, water consumption is greatly reduced, no emission of waste liquid is realized, and the method is a completely environmentally-friendly clean process; and in addition, after the iminodiacetic acid and the mother liquid are decolored by active carbon, accumulation of colored impurities is greatly reduced and the product quality is high.
Owner:CHONGQING UNISPLENDOUR CHEM

Method for treating glyphosate waste water and reducing the emission of carbon dioxide

The invention relates to a method for treating glyphosate waste water and reducing the emission of carbon dioxide. The glyphosate waste water is obtained by extracting glyphosate after the N-phosphonomethyliminodiacetic acid is oxidized in the process of preparing the glyphosate by using an iminodiacetic acid method. Urotropine finished products are prepared by the following steps: (1) adding alkali into the glyphosate waste water, and adjusting and controlling the pH value to between 3 and 5 to obtain corresponding formate solution; (2) performing condensing separation on the solution of the step (1) by a film integration method to obtain 5 to 25 percent formate solution and 0.5 to 5 percent obenzaldehyde water solution (1); (3) performing evaporating, dehydration and solid-liquid separation on the formate solution of the step (2) to obtain formate wet powder and 0.5 to 5 percent benzaldehyde water solution (2), and drying the formate wet powder to obtain the finished product; (4) adding ammonia accounting for 1.5 to 3 percent the benzaldehyde water solution (1) and the benzaldehyde water solution (2) to obtain 0.3 to 4 percent urotropine water solution, and improving the concentration of the urotropine to between 10 and 25 percent by film separation; and (5) evaporating, separating and drying the urotropine solution to obtain the urotropine finished product.
Owner:HANGZHOU TIAN CHUANG ENVIRONMENTAL TECH

Preparation method and application of macroporous chitosan-polyvinyl alcohol crosslinking affinity membrane chelated with metal ions

The invention relates to a preparation method and application of a macroporous chitosan-polyvinyl alcohol crosslinking affinity membrane chelated with metal ions. The preparation method of the membrane comprises the steps that chitosan, polyvinyl alcohol and silica gel are mixed to prepare a chitosan-polyvinyl alcohol membrane; processing and pore forming are performed with a sodium hydroxide solution; the chitosan-polyvinyl alcohol membrane is added in epoxy chloropropane and sodium hydroxide to obtain a macroporous chitosan-polyvinyl alcohol crosslinking membrane of a net structure; the macroporous chitosan-polyvinyl alcohol crosslinking membrane is steeped in a sodium carbonate solution containing iminodiacetic acid; the dried membrane is steeped in a solution containing divalent metal ions, and then the macroporous chitosan-polyvinyl alcohol crosslinking affinity membrane chelated with the metal ions is obtained. The macroporous chitosan-polyvinyl alcohol crosslinking affinity membrane chelated with the metal ions has the higher mechanical strength and has the efficient affinity adsorption capacity on protein containing histidine; the macroporous chitosan-polyvinyl alcohol crosslinking affinity membrane chelated with the metal ions is applied to separation of protein or enzymes containing the histidine, and the separation method comprises the steps of crude enzyme fluid preparation, specificity affinity adsorption of the membrane on the protein or enzymes containing the histidine, adsorption protein elution and membrane regeneration.
Owner:WUHAN UNIV OF SCI & TECH +1

Method for producing N-(phosphonomethyl)iminodiacetic acid and recycling mother solution by hydrogen chloride desalinization

The invention discloses a method for producing N-(phosphonomethyl)iminodiacetic acid and recycling a mother solution by hydrogen chloride desalinization, which comprises the following steps: 1) hydrolyzing iminodiacetonitrile with a sodium hydroxide solution to obtain disodium iminodiacetate; 2) adding hydrogen chloride to acidify the disodium iminodiacetate; 3) adding phosphorous acid and formaldehyde, heating to react to synthesize the N-(phosphonomethyl)iminodiacetic acid; 4) cooling, crystallizing, separating the solid, and drying to obtain the N-(phosphonomethyl)iminodiacetic acid product; 5) adding hydrogen chloride into the mother solution subjected to N-(phosphonomethyl)iminodiacetic acid separation until the concentration of the hydrogen chloride is 15-30% so as to precipitate sodium chloride, and separating and taking the sodium chloride out; and 6) returning the hydrogen-chloride-containing mother solution subjected to sodium chloride separation to the step 2) to acidify the disodium iminodiacetate. The method is simple and easy to implement, can avoid the problems of complex process and high energy consumption in the original desalinization technique for concentrating the mother solution, and can recycle excessive phosphorous acid, formaldehyde and dissolved N-(phosphonomethyl)iminodiacetic acid in the mother solution, thereby reducing the raw material consumption and enhancing the yield.
Owner:CHONGQING UNISPLENDOUR CHEM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products