Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

89results about How to "Reduce hot carrier effect" patented technology

Trench gate laterally diffused MOSFET devices and methods for making such devices

InactiveUS7033891B2Well breakdown capabilityLow gate-drain capacitanceSemiconductor/solid-state device manufacturingSemiconductor devicesHot carrier effectElectric field
A MOSFET device for RF applications that uses a trench gate in place of the lateral gate used in lateral MOSFET devices is described. The trench gate in the devices of the invention is provided with a single, short channel for high frequency gain. The device of the invention is also provided with an asymmetric oxide in the trench gate, as well as LDD regions that lower the gate-drain capacitance for improved RF performance. Such features allow these devices to maintain the advantages of the LDMOS structure (better linearity), thereby increasing the RF power gain. The trench gate LDMOS of the invention also reduces the hot carrier effects when compared to regular LDMOS devices by reducing the peak electric field and impact ionization. Thus, the devices of the invention will have a better breakdown capability.
Owner:SEMICON COMPONENTS IND LLC

Nanowire field effect transistor with split-gate structure

The invention discloses a nanowire field effect transistor with a split-gate structure. The transistor is formed by a split-gate electrode, a source region, a drain region, a channel region and a gate dielectric layer, wherein the channel region is columnar and is positioned in the center of the nanowire field effect transistor, and a material forming the channel region is a semiconductor material; the gate dielectric layer totally encircles the channel region coaxially; the split-gate electrode is positioned outside the gate dielectric layer and totally encircles the gate dielectric layer coaxially, and materials forming the split-gate electrode include two kinds of different materials; and the source region and the drain region are positioned at two sides of the channel region respectively. The introduction of the split-gate electrode structure can effectively improve the on-state current of nanowire transistors in prior arts and improve the current switch ratio and the working speed of devices. Simultaneously, the transistor is less affected by threshold voltage shift and drain induced barrier lowering effect resulted from short channel effect, and the performance of size reduction is more excellent.
Owner:PEKING UNIV

P type transversal bilateral diffusion metal oxide semiconductor tube capable of reducing hot carrier effect

The invention discloses a P-type lateral double-diffused metal-oxide transistor which is capable of reducing hot-carrier effect and comprises a P-type semiconductor substrate; an N-type well region is arranged on the P-type semiconductor substrate; a P-type well region and a P-type doped semiconductor area are arranged on the N-type well region; a P-type source area and an N-type contact area are arranged on the P-type well region; a P-type drain area is arranged on the P-type doped semiconductor area; and a field oxide layer, a metal layer, a gate oxide layer, a polysilicon grid and an oxide layer are arranged on the upper surface of the device. The P-type lateral double-diffused metal-oxide transistor is characterized in that: a lightly-doped shallow P-type area is arranged in the N-type well region and positioned between the P-type well region and the P-type doped semiconductor area and covers a corner which is formed by the gate oxide layer and the P-type doped semiconductor area.
Owner:SOUTHEAST UNIV

Grapheme nanometer stripe field-effect tube of three-material heterogeneous grid structure

The invention discloses a grapheme nanometer stripe field-effect tube of a three-material heterogeneous grid structure. A conducting channel (1), a source region (2) and a drain region (3) of the field-effect tube are all made of grapheme nanometer stripe materials. Besides the conducting channel (1), the source region (2) and the drain region (3), a grid oxide layer (4) is generated by methods of atomic deposition and the like, a metal electrode layer is reprecipitated outside the grid oxide layer (4) to serve as a grid (G) of the grapheme nanometer stripe field-effect tube of the three-material heterogeneous grid structure, and the grid (G) is made of conducting metal with three different work functions to form the heterogeneous grid of the grapheme nanometer stripe field-effect tube of the three-material heterogeneous grid structure. When the work functions of three materials gradually decrease from a source to a drain, or when a middle work function is the maximum and a work function close to the side of the drain is minimum, the structure can effectively improve performance, and the field-effect tube has lower leakage currents and a higher current switching ratio, and can suppress a drain induced barrier lowering (DIBL) effect.
Owner:NANJING UNIV OF POSTS & TELECOMM

Manufacturing method of lateral double-diffused transistor

The invention relates to the technical field of semiconductor power devices. The invention provides a manufacturing method of a lateral double-diffusion transistor. A drift region of a first doping type is formed in injection regions on a substrate and an overlapping region between the injection regions by utilizing multiple times of ion implantation (oblique angle implantation); and the doping concentration of the drift region is distributed in a gradient decreasing (linear variable doping concentration) manner from the center of the overlapping region to the two ends along the channel direction, so that a formed device is of a bilaterally symmetrical structure by taking the central axis of the drift region as the center. The breakdown voltage of the device is improved; enough impurity doping concentration is ensured; therefore, the device has relatively small on-resistance; the performance of the formed device is improved; according to the manufacturing method, the phenomenon that aspecially-made mask with a specific window design is used for forming the linear variable doping drift region in the prior art is avoided, the manufacturing cost is saved, and the linear distributionof the doping concentration of the drift region can be controlled by controlling the ion implantation frequency and angle through the process, so that the applicability of the manufacturing method isimproved.
Owner:JOULWATT TECH INC LTD

Nano-sheet ring gate field effect transistor with asymmetric gate oxygen structure

The invention discloses a nano-sheet ring gate field effect transistor with an asymmetric gate oxygen structure. The nano-sheet ring gate field effect transistor comprises a vertically stacked nano-sheet channel, a double-layer gate oxide wrapping outside the channel, a source and a drain arranged at the two ends of the channel, a double-layer side wall and a substrate arranged at the bottom. Thenano-sheet ring gate field effect transistor is characterized in that the gate oxide is formed by stacking a low dielectric constant material and a high dielectric constant material and is divided into two parts near the drain and the source with half of the channel length as the boundary. The total physical thickness of gate oxygen in the two parts is the same, and the low dielectric constant gate oxide is thinner and the high dielectric constant gate oxide is thicker in the double-layer gate oxides near the drain so as to form the nano-sheet ring gate field effect transistor with the asymmetric gate oxygen structure. Compared with the prior symmetrical type technology, the drain end electric field is lower and the hot carrier effect of the device can be effectively inhibited; it has moreideal on-state and off-state current and higher current switching ratio;and the leakage potential is more stable, the leakage-induced barrier reduction effect is suppressed and the short channel characteristics are improved.
Owner:EAST CHINA NORMAL UNIV +1

Strain vertical MOS device manufacturing method

InactiveCN103887178AOvercoming the difficulty of forming small-sized columnar graphsSimple manufacturing processNanoinformaticsSemiconductor/solid-state device manufacturingCharge carrier mobilityAlloy
Disclosed is a strain vertical MOS device manufacturing method. The method comprises the steps of conducting pattern transfer on a substrate, forming a metal mask, forming a silicon column through etching, reducing the diameter of the silicon column, preparing silicon nanowires and growing a gate oxide layer; conducting polycrystalline silicon deposition, doping and foreign ion activation to form an annular grid electrode; depositing a stress silicon nitride film outside the grid electrode to form a stress liner layer; conducting ion injection to form a drain terminal n- doping area; conducting ion injection on the peripheral annular area of the substrate to form a drain terminal n+ doping area; conducting P+ ion injection on the upper portions of the silicon nanowires to form a Halo doping structure, and conducting n type ion injection to form a source terminal; depositing metal and alloy. According to the method, the grid-control capacity of devices in a nanometer node integrated circuit is improved, the short-channel effect and hot carrier effect are restrained, carrier mobility is improved, current driving capacity is improved, the size of the devices is reduced on the premise that the performance of the devices is not reduced, and then requirements for miniaturization of the devices are met.
Owner:XI AN JIAOTONG UNIV

Semiconductor device and manufacturing method thereof

The invention provides a semiconductor device and a manufacturing method thereof. The semiconductor device comprises a first-class high-voltage nLDMOS device, a first-class high-voltage pLDMOS device,a second-class high-voltage nLDMOS device, a second-class high-voltage pLDMOS device, a low-voltage NMOS device, a low-voltage PMOS device and a low-voltage NPN device which are integrated on the same chip. The first p-type field reduction layer is located on the surface, so that the conductive channel moves downwards, the hot carrier effect is reduced, and the reliability of the device is improved. The n-type heavily doped layer, the p-type field reduction layer, the n-type deep trap, the p-type trap and the p-type substrate form a multiple RESURF structure, the specific on-resistance of thehigh-voltage device is reduced, and the manufacturing cost of the chip is reduced. Compared with a traditional structure without an n-type heavily doped layer, the n-type heavily doped layer has smaller on-resistance under the condition of the same chip area, the on-resistance and the dynamic resistance of the device can be reduced through the n-type heavily doped layer, and the nLDMOS device further has the advantages of being high in input impedance, low in output impedance and the like.
Owner:UNIV OF ELECTRONIC SCI & TECH OF CHINA

Reduced hot carrier induced parasitic sidewall device activation in isolated buried channel devices by conductive buried channel depth optimization

A semiconductor device includes a transistor junction formed in a substrate adjacent to an isolation region. A region between the transistor junction and the isolation region includes an area susceptible to hot carrier effects. The transistor junction extends from a surface of the substrate to a first depth. A buried conductive channel layer is formed within the transistor junction between the surface of the substrate and the first depth. The buried conductive channel layer has a peak conduction depth, which is different from a depth of the area susceptible to hot carrier effects.
Owner:SAMSUNG ELECTRONICS CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products