Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3992 results about "Near infra red" patented technology

Method and apparatus for improving the accuracy of noninvasive hematocrit measurements

A device and a method to provide a more reliable and accurate measurement of hematocrit (Hct) by noninvasive means. The changes in the intensities of light of multiple wavelengths transmitted through or reflected light from the tissue location are recorded immediately before and after occluding the flow of venous blood from the tissue location with an occlusion device positioned near the tissue location. As the venous return stops and the incoming arterial blood expands the blood vessels, the light intensities measured within a particular band of near-infrared wavelengths decrease in proportion to the volume of hemoglobin in the tissue location; those intensities measured within a separate band of wavelengths in which water absorbs respond to the difference between the water fractions within the blood and the displaced tissue volume. A mathematical algorithm applied to the time-varying intensities yields a quantitative estimate of the absolute concentration of hemoglobin in the blood. To compensate for the effect of the unknown fraction of water in the extravascular tissue on the Hct measurement, the tissue water fraction is determined before the occlusion cycle begins by measuring the diffuse transmittance or reflectance spectra of the tissue at selected wavelengths.
Owner:COVIDIEN LP

System, method and computer-accessible medium for characterization of tissue

An exemplary system, method and computer-accessible medium for determining resultant information about a portion(s) of a tissue(s), can include, for example, receiving initial information which is based on a particular radiation that is returned from the portion(s), the particular radiation can be is based solely on an interaction between the portion(s) and a near-infrared radiation forwarded to the portion(s), and determining the resultant information about the portion(s) of the tissue(s) based on the initial information. The near-infrared radiation can be provided by a near-infrared light optical arrangement that can include a diffusely reflected near-infrared light arrangement. A depth of a lesion to be ablated can be determined by the near-infrared radiation based on the initial information. The initial information can include data corresponding to a reflectance spectrum(s) of the portion(s).
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Method for spectrophotometric blood oxygenation monitoring

A method and apparatus for non-invasively determining the blood oxygen saturation level within a subject's tissue is provided that utilizes a near infrared spectrophotometric (NIRS) sensor capable of transmitting a light signal into the tissue of a subject and sensing the light signal once it has passed through the transmitting a light signal into the subject's tissue, wherein the transmitted light signal includes a first wavelength, a second wavelength, and a third wavelength; (2) sensing a first intensity and a second intensity of the light signal, along the first, second, and third wavelengths after the light signal travels through the subject at a first and second predetermined distance; (3) determining an attenuation of the light signal for each of the first, second, and third wavelengths using the sensed first intensity and sensed second intensity of the first, second, and third wavelengths; (4) determining a difference in attenuation of the light signal between the first wavelength and the second wavelength, and between the first wavelength and the third wavelength; and (5) determining the blood oxygen saturation level within the subject's tissue using the difference in attenuation between the first wavelength and the second wavelength, and the difference in attenuation between the first wavelength and the third wavelength.
Owner:EDWARDS LIFESCIENCES CORP

Solar control coated glass

A solar-control glass that has acceptable visible light transmission, absorbs near infrared wavelength light (NIR) and reflects midrange infrared light (low emissivity mid IR) along with a preselected color within the visible light spectrum for reflected light is provided. Also provided is a method of producing the improved, coated, solar-controlled glass. The improved glass has a solar energy (NIR) absorbing layer comprising tin oxide having a dopant such as antimony and a low emissivity control layer (low emissivity) capable of reflecting midrange infrared light and comprising tin oxide having fluorine and / or phosphorus dopant. A separate iridescence color suppressing layer as described in the prior art is generally not needed to achieve a neutral (colorless) appearance for the coated glass, however an iridescence suppressing layer or other layers may be combined with the two layer assemblage provided by the present invention. If desired, multiple solar control and / or multiple low emissivity layers can be utilized. The NIR layer and the low emissivity layer can be separate portions of a single tin oxide film since both layers are composed of doped tin oxide. A method of producing the coated solar control glass is also provided.
Owner:ARKEMA INC

Bundling night vision and other driver assistance systems (DAS) using near infra red (NIR) illumination and a rolling shutter

A system mountable in a motor vehicle. The system includes a camera and a processor configured to receive image data from the camera. The camera includes a rolling shutter configured to capture the image data during a frame period and to scan and to read the image data into multiple image frames. A near infra-red illuminator may be configured to provide a near infra-red illumination cone in the field of view of the camera. The near infrared illumination oscillates with an illumination period. A synchronization mechanism may be configured to synchronize the illumination period to the frame period of the rolling shutter. The frame period may be selected so that the synchronization mechanism provides a spatial profile of the near infra-red illumination cone which may be substantially aligned vertically to a specific region, e.g. near the center of the image frame.
Owner:MOBILEYE VISION TECH LTD

Near infrared absorbing film, and multi-layered panel comprising the film

In a film or panel having excellent near-infrared absorbability and excellent near-infrared shieldability, and having a high degree of visible ray transmittance and good color tone, in order to produce the near-infrared-absorbing film or panel having good color tone while the near-infrared-absorbing dye disposed therein is kept stable, the dye and the binder resin for the dye are specifically selected, and the production method is also specifically selected. In addition, for the purpose of producing the film or panel while the dye disposed therein is kept stable and for the purpose of making the film or panel have additional functions such as electromagnetic radiation absorbability, the film or panel is made to have a multi-layered structure.
Owner:OSAKA GAS CO LTD

Multi-Wavelength Spatial Domain Near Infrared Oximeter to Detect Cerebral Hypoxia-Ischemia

Methods and apparatus for measuring cerebral O2 saturation and detecting cerebral hypoxia-ischemia using multi-wavelength near infrared spectroscopy (NIRS). Near-infrared light produced by an emitter is directed through brain tissue. The intensity of the light that passes through the brain tissue is measured using photodiode detectors positioned at distinct distances from the emitter. This process is conducted for at least three wavelengths of near-infrared light. One of the wavelengths used is substantially at an isobestic point for oxy-hemoglobin and deoxy-hemoglobin, but the other two may be any wavelengths within the near-infrared spectrum (700 nm to 900 nm), so long as one of the additional wavelengths is greater than the isobestic point and the other is less than the isobestic point. Tissue oxygenation is calculated using an algorithm derived from the Beer-Lambert law. Cerebral hypoxia-ischemia may be diagnosed using the calculated tissue oxygenation value.
Owner:KURTH CHARLES DEAN

Optical tracking apparatus using six degrees of freedom

This invention discloses an optical object tracking method and system with to up to six degrees of freedom: three translational and three angular coordinates. In the preferred embodiment, the system includes two near-infra-red light sources (e.g., light emitting diode), two cameras, and a digital signal processor. The system performs to tasks: object locking and tracking. For object locking and tracking, a single camera and two off-axis light sources are engaged. For more precise object tracking, two spatially-separate cameras and a single diode are used. In another embodiment, a third camera may be used to separate the locking and tracking tasks. The light sources may have different light wavelengths and may operate in a sequential mode. The cameras may be sensitive over different spectral ranges and may also differ in terms of field-of-view and resolution. The invention describes a method based on capturing images of light reflections at the camera focal plane and analyzing them, through mathematical mapping, for known locations of light sources and cameras. Invention can be adopted for the tracking of an eyeball. The related method determines an object location and orientation or a gaze vector and a point-of-regard.
Owner:KAPLAN ARKADY

Near infrared/color image sensor

A near infrared / color photodetector made in a monolithic form in a lightly-doped substrate of a first conductivity type covering a holder and comprising a face on the side opposed to the holder. The photodetector includes at least first and second photodiodes for the storage of electric charges photogenerated in the substrate, the second photodiode being adjacent to said face; and a first region extending at least between the second photodiode and the holder, preventing the passage of said charges between a first substrate portion being located between said region and the holder and a second substrate portion extending between said face and the first region, the first photodiode being adapted to store at least charges photogenerated in the first substrate portion and the second photodiode being adapted to store charges photogenerated in the second substrate portion.
Owner:STMICROELECTRONICS SRL

Apparatus and method and techniques for measuring and correlating characteristics of fruit with visible/near infra-red spectrum

This disclosure is of 1) the utilization of the spectrum from 250 nm to 1150 nm for measurement of prediction of one or more parameters, e.g., brix, firmness, acidity, density, pH, color and external and internal defects and disorders including, for example, surface and subsurface braises, scarring, sun scald, punctures, in N—H, C—H and O—H samples including fruit; 2) an apparatus and method of detecting emitted light from samples exposed to the above spectrum in at least one spectrum range and, in the preferred embodiment, in at least two spectrum ranges of 250 to 499 nm and 500 nm; 3) the use of the chlorophyl band, peaking at 690 nm, in combination with the spectrum from 700 nm and above to predict one or more of the above parameters; 4) the use of the visible pigment region, including xanthophyll, from approximately 250 nm to 499 nm and anthocyanin from approximately 500 to 550 nm, in combination with the chlorophyl band and the spectrum from 700 nm and above to predict the all of the above parameters.
Owner:FPS FOOD PROCESSING SYST BV

Multispectral imaging for quantitative contrast of functional and structural features of layers inside optically dense media such as tissue

A method for the evaluation of target media parameters in the visible and near infrared is disclosed. The apparatus comprises a light source, an illuminator / collector, optional illumination wavelength selector, an optional light gating processor, an imager, detected wavelength selector, controller, analyzer and a display unit. The apparatus illuminates an in situ sample of the target media in the visible through near infrared spectral region using multiple wavelengths and gated light. The sample absorbs some of the light while a large portion of the light is diffusely scattered within the sample. Scattering disperses the light in all directions. A fraction of the deeply penetrating scattered light exits the sample and may be detected in an imaging fashion using wavelength selection and an optical imaging system. The method extends the dynamic range of the optical imager by extracting additional information from the detected light that is used to provide reconstructed contrast of smaller concentrations of chromophores. The light detected from tissue contains unique spectral information related to various components of the tissue. Using a reiterative calibration method, the acquired spectra and images are analyzed and displayed in near real time in such a manner as to characterize functional and structural information of the target tissue.
Owner:APOGEE BIODIMENSIONS

Front electrode for use in photovoltaic device and method of making same

This invention relates to a front electrode / contact for use in an electronic device such as a photovoltaic device. In certain example embodiments, the front electrode of a photovoltaic device or the like includes a multilayer coating including at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, ITO, zinc oxide, or the like) and / or at least one conductive substantially metallic IR reflecting layer (e.g., based on silver, gold, or the like). In certain example instances, the multilayer front electrode coating may include one or more conductive metal(s) oxide layer(s) and one or more conductive substantially metallic IR reflecting layer(s) in order to provide for reduced visible light reflection, increased conductivity, cheaper manufacturability, and / or increased infrared (IR) reflection capability. In certain example embodiments, the front electrode acts as not only a transparent conductive front contact / electrode but also a short pass filter that allows an increased amount of photons having high energy (such as in visible and near infra-red regions of the spectrum) into the active region or absorber of the photovoltaic device.
Owner:GUARDIAN GLASS LLC

Near-infrared spectroscopic tissue imaging for medical applications

Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Device for optical monitoring of constituent in tissue or body fluid sample using wavelength modulation spectroscopy, such as for blood glucose levels

A device for monitoring the concentration level of a constituent in tissue or a body fluid sample, such as glucose concentration in blood, has a laser light source which is modulated about a center emission frequency to probe the absorption spectrum of the constituent being monitored, a laser driver circuit for tuning and modulating the laser light, a photodetector for detecting light from the laser light source transmitted through the sample as the modulation frequency of the laser is tuned, and a demodulator for demodulating the transmitted light and detecting variations in magnitude at harmonics of the modulation frequency to assess the concentration level of that constituent. The device utilizes short-wavelength near-infrared laser light to monitor blood glucose levels, and could also be used for drug screening and diagnosis of other medical conditions as well. In one embodiment, the device is used to monitor blood glucose level externally from the body and non-invasively by trans-illumination through a thin layer of skin, without the need for physical penetration of the skin. In another embodiment, the device is used as an intravenous sensor deployed through a catheter, and its output can be used to control an insulin pump to stabilize the patient's blood glucose levels.
Owner:UNIV OF HAWAII

Automatic multiple depth cameras synchronization using time sharing

Aspects relate to an depth sensing system for capturing an image containing depth information of an object. In one embodiment, a depth sensing device for use in conjunction with multiple depth sensing devices for capturing an image containing depth information of an object comprises a near-infrared transmitter comprising a laser capable of producing a near infra-red light beam, a diffractive optical element positioned to receive a light beam emitted from the laser, the diffractive optical element, and a collimating lens, and a near-infrared receiver coupled to the transmitter in a relative position, the receiver comprising a sensor assembly capable of producing an image of the received light, the depth sensing device being configured to transmit and receive near infra-red light beams during a time period that is different than any of the other of two or more transmitter-receiver pairs of devices in communication with the depth sensing device.
Owner:QUALCOMM INC

Near infra-red composite polymer-nanocrystal materials and electro-optical devices produced therefrom

The invention comprises a composite material comprising a host material in which are incorporated semiconductor nanocrystals. The host material is light-transmissive and / or light-emissive and is electrical chargetransporting thus permitting electrical charge transport to the core of the nanocrystals. The semiconductor nanocrystals emit and / or absorb light in the near infrared spectral range. The nanocrystals cause the composite material to emit / absorb energy in the near infrared (NIR) spectral range, and / or to have a modified dielectric constant, compared to the host material. The invention further comprises electro-optical devices composed of this composite material and a method of producing them. Specifically described are light emitting diodes that emit light in the NIR and photodetectors that absorb light in the same region.
Owner:YISSUM RES DEV CO OF THE HEBREWUNIVERSITY OF JERUSALEM LTD +1

Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths

Described is a method which uses spectral data simultaneously collected in a continuous array of discrete wavelength points of the visible spectrum adjacent to the infrared and near infrared part of the light spectrum. The spectral data is collected using a number of detectors with different sensitivity ranges. Some detectors may be sensitive to visible and possibly, to part of the near infrared portion of radiation. Spectral data from die infrared spectrum is collected with the infrared detectors, and are in some embodiments insensitive to the visible links.
Owner:TYCO HEALTHCARE GRP LP

System for transcutaneous monitoring of intracranial pressure (ICP) using near infrared (NIR) telemetry

A system for measuring and converting to an observer intelligible form an internal physiological parameter of a medical patient. The invention allows transcutaneous telemetry of the measured information intracranial pressure via a system which includes a patient implanted sensor module and a processing and display module which is external of the patient and optically coupled to the sensor module via an external coupling module. A sensor within the implanted module transduces the measured information and a near infrared (NIR) emitter transmits this telemetry information when interrogated by the complementary external coupling module. Power for the sensor module is derived inductively through rectification of a transcutaneously-applied high-frequency alternating electromagnetic field which is generated by a power source within the external coupling module, in concept much like a conventional electrical transformer. A computer within the processing and display module calculates the parameter value from the NIR telemetry signal and represents this data either in numerical, graphical, or analog format.
Owner:WOLF ERICH W

Endoscope objective lens with large entrance pupil diameter and high numerical aperture

An endoscope objective lens for collecting combined bright field (white light) and fluorescence images includes a negative lens group, a stop, and a positive lens group. The lens has a combination of large entrance pupil diameter (≧0.4 mm) for efficiently collecting weak fluorescence light, large ratio between the entrance pupil diameter and the maximum outside diameter (Dentrance / Dmax larger than 0.2), large field of view (FFOV≧120°) and favorably corrected spherical, lateral chromatic and Petzval field curvature for both visible and near infrared wavelengths.
Owner:GENERAL ELECTRIC CO

Spectroscopic imaging device employing imaging quality spectral filters

Techniques for providing spectroscopic imaging integrates an acousto-optic tunable filter (AOTF), or an interferometer, and a focal plane array detector. In operation, wavelength selectivity is provided by the AOTF or the interferometer. A focal plane array detector is used as the imaging detector in both cases. Operation within the ultraviolet, visible, near-infrared (NIR) spectral regions, and into the infrared spectral region, is achieved. The techniques can be used in absorption spectroscopy and emission spectroscopy. Spectroscopic images with a spectral resolution of a few nanometers and a spatial resolution of about a micron, are collected rapidly using the AOTF. Higher spectral resolution images are recorded at lower speeds using the interferometer. The AOTF technique uses entirely solid-state components and requires no moving parts. Alternatively, the interferometer technique employs either a step-scan interferometer or a continuously modulated interferometer.
Owner:US DEPT OF HEALTH & HUMAN SERVICES

Second, third and fourth near-infrared spectral windows for deep optical imaging of tissue with less scattering

Light at wavelengths in the near-infrared (NIR) region in the second NIR spectral window from 1,100 nm to 1,350 nm and a new spectral window from 1,600 nm to 1,870 nm, known as the third NIR optical window, and fourth at 2200 cm−1 are disclosed. Optical attenuation from thin tissue slices of normal and malignant breast and prostate tissue, and pig brain were measured in the spectral range from 400 nm to 2,500 nm. Optical images of chicken tissue overlying three black wires were also obtained using the second and third spectral windows. Due to a reduction in scattering and minimal absorption, longer attenuation and clearer images can be seen in the second, third and fourth NIR windows compared to the conventional first NIR window. The second and third spectral windows will have uses in microscope imaging arteries, bones, breast, cells, cracks, teeth, and blood due to less scattering of light.
Owner:ALFANO ROBERT R

Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy

ActiveUS20050020892A1Layer is minimizedMaximize collection of lightDiagnostics using spectroscopyScattering properties measurementsFiberConcentrations glucose
A near IR spectrometer-based analyzer attaches continuously or semi-continuously to a human subject and collects spectral measurements for determining a biological parameter in the sampled tissue, such as glucose concentration. The analyzer includes an optical system optimized to target the cutaneous layer of the sampled tissue so that interference from the adipose layer is minimized. The optical system includes at least one optical probe. Spacing between optical paths and detection fibers of each probe and between probes is optimized to minimize sampling of the adipose subcutaneous layer and to maximize collection of light backscattered from the cutaneous layer. Penetration depth is optimized by limiting range of distances between paths and detection fibers. Minimizing sampling of the adipose layer greatly reduces interference contributed by the fat band in the sample spectrum, increasing signal-to-noise ratio. Providing multiple probes also minimizes interference in the sample spectrum due to placement errors.
Owner:GLT ACQUISITION

Near Infrared Ray Reflective Substrate And Near Infrared Ray Reflective Laminated Glass Employing That Substrate, Near Infrared Ray Reflective Double Layer Glass

In a near-infrared reflective substrate prepared by forming on a transparent substrate a near-infrared reflective film prepared by alternate deposition of low-refractive-index dielectric films and high-refractive-index dielectric films, there is provided a near-infrared reflective substrate characterized in that the transparent substrate is a plate glass or polymer resin sheet, that it is 70% or greater in visible light transmittance defined in JIS R3106-1998, and that it has a maximum value of reflection that exceeds 50% in a wavelength region of 900 nm to 1400 nm.
Owner:CENT GLASS CO LTD

Eye-safe near infra-red imaging illumination method and system

A method and system for eye-safe near infra-red (NIR) optical imaging illumination. An eye of an intended subject are imaged with visible light or NIR light at an unconditionally eye-safe illumination level and the maximum permissible eye-safe NIR illumination that can be applied to the eye is determined from the captured images. The eye of the intended subject can then be illuminated with at least one substantially maximal NIR light pulse having a pulse intensity and duration selected to provide the substantially maximum permissible eye-safe NIR illumination intensity at the eye. NIR light pulse illumination can be inhibited in response to detection of other subjects either within the vicinity of a volume extending between an NIR illuminator illuminating the eye and the intended subject. The likelihood that an intended subject has been recently illuminated can also be determined and statistical measures can be used to avoid re-illuminating subject unnecessarily.
Owner:GENTEX CORP

Methods and apparatus for urodynamic analysis

A method for monitoring bladder function in an animal having a bladder, the method including positioning of a light emitter and a light detector on the animal's skin adjacent to the animal's bladder, emitting light at the bladder with the emitter while detecting light with the detector, and collecting data representative of detected light during bladder activity, to provide an indication of bladder function. Also provided are light shield apparatus and filter apparatus for near infrared spectroscopy (NIRS) bladder monitoring.
Owner:HEGLN DALIAN PHARMA

Apparatus for evaluating biological function, a method for evaluating biological function, a living body probe, a living body probe mounting device, a living body probe support device and a living body probe mounting accessory

The apparatus for evaluating biological function of the present invention has living body probes 1, a behavioral information measuring part 2 and an apparatus body 3, and it utilizes near-infrared spectroscopy to evaluate biological function; apparatus body 3 has a controller 8 for calculating (based on light information from living body probes 1) a variety of parameters derived from two-dimensional diagrams showing relationships between changes in oxyhemoglobin and changes in deoxyhemoglobin and two-dimensional diagrams showing relationships between absolute amounts of oxyhemoglobin and absolute amounts of deoxyhemoglobin, a behavioral information input part for entering behavioral information measured by means of behavioral information measuring part 12, and a display part 10 for performing various types of image displays based on various parameters calculated by means of controller 8 and / or behavioral information entered in the behavioral information input part.
Owner:KATO

Determination of light absorption pathlength in a vertical-beam photometer

Disclosed are photometric methods and devices for determining optical pathlength of liquid samples containing analytes dissolved or suspended in a solvent. The methods and devices rely on determining a relationship between the light absorption properties of the solvent and the optical pathlength of liquid samples containing the solvent. This relationship is used to establish the optical pathlength for samples containing an unknown concentration of analyte but having similar solvent composition. Further disclosed are methods and devices for determining the concentration of analyte in such samples where both the optical pathlength and the concentration of analyte are unknown. The methods and devices rely on separately determining, at different wavelengths of light, light absorption by the solvent and light absorption by the analyte. Light absorption by the analyte, together with the optical pathlength so determined, is used to calculate the concentration of the analyte. Devices for carrying out the methods particularly advantageously include vertical-beam photometers containing samples disposed within the wells of multi-assay plates, wherein the photometer is able to monitor light absorption of each sample at multiple wavelengths, including in the visible or UV-visible region of the spectrum, as well as in the near-infrared region of the electromagnetic spectrum. Novel photometer devices are described which automatically determine the concentration of analytes in such multi-assay plates directly without employing a standard curve.
Owner:MOLECULAR DEVICES

Fake currency detector using visual and reflective spectral response

A system for automatic detection of authenticity of security documents by measuring reflected components of incident energy in three or more optical wave bands. The system involves the use of UV-visible light source, an optional near infra red light source, photodetectors and associated sensing circuitry. Photoelectric signals generated by photodetectors from the reflected energy received from a security document are used to verify its authenticity under UV-visible along with optional near infra red illumination. The process involves measurement of energy reflected as photoelectric signals from a security document in at least three optical wavebands by suitably located photodetectors with appropriate wave band filters and the electronic signal processing to distinguish between a genuine document from a fake one for ultimate LED indicator display and audio-visual alarms, hence the detection of fake security document.
Owner:COUNCIL OF SCI & IND RES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products